Synlett 2008(13): 1999-2004  
DOI: 10.1055/s-2008-1078594
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Chiral Ethyl 5-(Acetoxyimino)-2,7,7-trimethyl-4-(1-naphthyl)-5,6,7,8-tetrahydroquinoline-3-carboxylate via Lipase-Catalyzed Hydrolysis

Yongchang Zhou*, Yu Sato, Tatsuro Kijima, Taeko Izumi
Department of Chemistry and Chemical Engineering, Graduate School of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
Fax: +81(238)263413; e-Mail: yczhou97@hotmail.com;
Further Information

Publication History

Received 15 April 2008
Publication Date:
15 July 2008 (online)

Abstract

Novel racemic polyhydroquinoline derivatives were synthesized by a one-pot approach via a modified Hantzsch reaction and then by aromatization. The optical resolution was carried out by using lipase l-2 in MTBE containing one equivalent of butanol. This method allows the preparation of (+)-7 (>99% ee) and (-)-8 (99% ee) in 50% yield, respectively. The E value is up to 1175.

    References and Notes

  • 1a Hantzsch A. Justus Liebigs Ann. Chem.  1882,  215:  1 
  • 1b Horton DA. Bourne GT. Smythe ML. Chem. Rev.  2003,  103:  893 
  • 1c Berson JA. Brown E. J. Am. Chem. Soc.  1955,  77:  444 
  • 1d Dolle F. Hinnen F. Valette H. Fuseau C. Duval R. Peglion J.-L. Crouzel C. Bioorg. Med. Chem.  1997,  5:  749 
  • 1e Dondoni A. Massi A. Minghini E. Sabbatini S. Bertolasi V. J. Org. Chem.  2003,  68:  6172 
  • 1f Natale NR. Rogers ME. Staples R. Triggle DJ. Rutledge A. J. Med. Chem.  1999,  42:  3087 
  • 1g Raboin J.-C. Kirsch G. Beley M. J. Heterocycl. Chem.  2000,  37:  1077 
  • 1h Kürti L. Czakó B. Strategic Applications of Named Reactions in Organic Synthesis   Elsevier Academic Press; Amsterdam: 2005.  p.194 
  • 2a Chai LZ. Zhao YK. Sheng QJ. Liu ZQ. Tetrahedron Lett.  2006,  47:  9283 
  • 2b Peng LJ. Wang JT. Lu Z. Liu ZQ. Wu LM. Tetrahedron Lett.  2008,  49:  1586 
  • 2c Kumar S. Sharma P. Kapoor KK. Hundal MS. Tetrahedron  2008,  64:  536 
  • 2d Kikuchi S. Iwai Ma. Murayama H. Fukuzawa S. Tetrahedron Lett.  2008,  49:  116 
  • Synthesis of streptonigrin and its derivatives:
  • 3a Bringmann G. Reichert Y. Kane VV. Tetrahedron  2004,  60:  3539 
  • 3b McElroy WT. DeShong P. Tetrahedron  2006,  62:  6945 
  • 4a Trecourt F. Mallet M. Mongin O. J. Org. Chem.  1994,  59:  6137 
  • 4b Kilama JJ. Iyengar BS. Remers WA. J. Heterocycl. Chem.  1990,  27:  1437 
  • 4c Wittek PJ. Liao TK. Cheng CC. J. Org. Chem.  1979,  44:  870 
  • 4d Weinreb SM. Basha FZ. Hibino S. Khatri NA. Kim D. Pye WE. Wu TT. J. Am. Chem. Soc.  1982,  104:  536 
  • 4e Suzuki M. Iwasaki H. Fujikawa Y. Sakashita M. Kitahara M. Sakoda R. Bioorg. Med. Chem. Lett.  2001,  11:  1285 
  • 5a Mizufune H, Matsumura U, Sera M, Tawada H, and Ueda T. inventors; JP  232 819. 
  • 5b Cohen N, Lee FK, and Yagaloff KA. inventors; WO Patent  028386. 
  • 6a Wang LM. Sheng J. Zhang L. Han JW. Fan ZY. Tian H. Qian CT. Tetrahedron  2005,  61, 1539 
  • 6b Agrios K. inventors;   WO 010164. 
  • 6c Natarajan SR. Wisnoski DD. Singh SB. Stelmach JE. O’Neill EA. Schwartz CD. Thompson CM. Fitzgerald CE. O’Keefe SJ. Kumar S. Hop CECA. Zaller DM. Schmatz DM. Doherty JB. Bioorg. Med. Chem. Lett.  2003,  13:  273 
  • 7a Solodenko W. Brochwitz C. Wartchow R. Hashem MA. Dawood KM. Vaultier M. Kirschning A. Mol. Diversity  2005,  9:  333 
  • 7b Botella L. Nájera C. J. Organomet. Chem.  2002,  663:  46 
  • 7c Alonso DA. Botella L. Nájera C. Pacheco C. Synthesis  2004,  1713 
  • 7d Milios CJ. Stamatatos TC. Perlepes SP. Polyhedron  2006,  25:  134 
  • 7e Zhou YC. Kijima T. Izumi T. 14th IUPAC Symposium on Organometallic Chemistry Directed towards Organic Synthesis (OMCOS 14)   Nara; Japan: 2007. 
  • 8 Zhou YC. Kijima T. Kuwahara S. Watanabe M. Izumia T. Tetrahedron Lett.  2008,  49:  3757 
  • Mechanisum of the Hantzsch dihydropyridine synthesis:
  • 9a Katritzky AR. Ostercamp DL. Yousaf TI. Tetrahedron  1986,  42:  5729 
  • 9b Katritzky AR. Ostercamp DL. Yousaf TI. Tetrahedron  1987,  43:  5171 
  • 9c Bredenkamp MW. Holzapfel CW. Synman RM. Van Zyl WJ. Synth. Commun.  1992,  22:  3029 
  • 10a Sharma SD. Hazarika P. Konwar D. Catal. Commun.  2008,  9:  709 
  • 10b Kumar A. Maurya RA. Tetrahedron  2007,  63:  1946 
  • 10c Loev B. Snader KM. J. Org. Chem.  1965,  30:  1914 
  • 10d Reddy KK. Reddy CS. Yadav JS. Tetrahedron Lett.  2003,  44:  4129 
  • 10e Ji SJ. Jiang ZQ. Lu J. Loh TP. Synlett  2004,  831 
  • 10f Breitenbucher JG. Figliozzi G. Tetrahedron Lett.  2000,  41:  4311 
  • 10g Dondoni A. Massi A. Minghini E. Bertolasi V. Tetrahedron  2004,  60:  2311 
  • 10h Ko S. Yao CF. Tetrahedron  2006,  62:  7293 
  • 10i Mehdipour AR. Javidnia K. Hemmateenejad B. Amirghofran Z. Miri R. Chem. Biol. Drug Des.  2007,  70:  337 
  • 10j Fang XQ. Liu YC. Li CZ. J. Org. Chem.  2007,  72:  8608 
  • 10k Murugan P. Hwang KC. Thirumalai D. Ramakrishnan VT. Synth. Commun.  2005,  35:  13 
  • 10l Tolkunov SV. Khyzhan AI. Shishkina SV. Shishkin OV. Dulenko VI. Chem. Heterocycl. Compd.  2004,  40:  58 
  • 10m Mashraqui SH. Karnik MA. Tetrahedron Lett.  1998,  39:  4895 
  • 10n Nakamichi N. Kawashita Y. Hayashi M. Org. Lett.  2002,  4:  3955 
  • 10o Yadav JS. Reddy BVS. Sabitha G. Reddy KK. Synthesis  2000,  1532 
  • 10p Yadav JS. Reddy BVS. Basak AK. Baishya G. Narsaiah AV. Synthesis  2006,  451 
  • 10q Han B. Liu Q. Liu ZG. Mu RZ. Zhang W. Liu ZL. Yu W. Synlett  2005,  2333 
  • 11a Murakata M. Imai M. Tamura M. Hoshino O. Tetrahedron: Asymmetry  1994,  5:  2019 
  • 11b Baldoli C. Maiorana S. Carreab G. Riva S. Tetrahedron: Asymmetry  1993,  4:  767 
  • 11c Hirose Y. Kariya K. Sasaki I. Kurono Y. Ebiike H. Achiwa K. Tetrahedron Lett.  1992,  33:  7157 
  • 11d Ebiike H. Terao Y. Achiwa K. Tetrahedron Lett.  1991,  32:  5808 
  • 11e Pulido R. Ortiz FL. Gotor V. J. Chem. Soc., Perkin Trans. 1  1992,  2891 
  • 11f Pulido R. Gotor V. Carbohydr. Res.  1994,  252:  55 
  • 11g Aoyagi N. Ohwada T. Izumi T. Tetrahedron Lett.  2004,  45:  5189 
  • 22 Chen C.-S. Fujimoto Y. Girdaukas G. Sih CJ. J. Am. Chem. Soc.  1982,  104:  7294 
12

Analytical-grade solvents and all chemicals were purchased from TCI Ltd. The ¹H NMR and ¹³C NMR spectra were measured with a JNM-ECS400 NMR spectrometer (400 MHz), JNM-ECS600 (600 MHz), Varian Mercury 200 (200 MHz), and Varian UNITY-INOVA 500 (500 MHz), respectively, in CHCl3-d 3 or DMSO solutions, and the chemical shifts are given relative to the residual solvent signal or TMS as internal standard. Mass spectra were recorded on a JOEL JMS-AX505HA and Shimadzu GCMS-QP5000 with GC-17A, respectively. The melting point was determined by MFB-595-030G digital thermometer apparatus. The IR spectra were recorded on a HORIBA FT-710 spectrometer. The UV/Vis spectra were recorded on a Hitachi U-2010 UV/Visible Spectrophotometer. The CD spectra were recorded on a JASCO J-720 spectrometer (L = 1 mm). Optical rotations were measured on a JASCO DIP-370 Digital Polarimeter.

13

General One-Pot Procedure
To a mixture of MeOH (30 mL) and toluene (30 mL), ethyl acetoactate (5.20 g, 40 mmol), 1-naphthaldehyde (6.24 g, 40 mmol), dimedone (5.60 g, 40 mmol), and NH4OAc (3.24 g, 42 mmol) were added. The mixture was heated to reflux under stirring for 24 h. The resulting solution was worked up by azeotropic distillation to separate off all toluene, to which then H2O (3 mL) was added. The resulting solvent was kept refluxing for another 24 h and then allowed to cool to r.t. The crystals were formed and filtered to give the product.

14

Synthesis of Ethyl 2,7,7-trimethyl-4-(naphthalen-1-yl)-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylate (5)
Using the one-pot procedure, the light yellow crystals were formed and filtered to give the title compound with a yield of 96%; slight yellow solid; crystallized from EtOH; MS (FAB+): m/z = 390 [MH+]; mp 194.0-195.7 ˚C. IR (KBr):
ν = 3324 (NH), 1697 (CO) cm. ¹H NMR (400 MHz, DMSO): δ = 9.11 (s, 1 H, NH), 8.63-8.61 (d, J = 8.61 Hz, 1 H, HAr), 7.76-7.74 (d, J = 8.15 Hz, 1 H, HAr), 7.63-7.61 (d, 1 H, HAr), 7.50-7.46 (dd, J = 7.25, 7.70 Hz, 1 H, HAr), 7.42-7.38 (dd, J = 7.25, 7.25 Hz, 1 H, HAr), 7.33 (s, 1 H, HAr), 5.60 (s, 1 H, OH), 3.81-3.62 (qq, qq, 2 H, CH2), 2.46-2.42 (d, J = 17.22 Hz, 1 H, CH2), 2.31-2.27 (d, J = 13.59 Hz, 1 H, CH2), 2.12-2.08 (d, J = 16.31 Hz, 1 H, CH2), 1.85-1.81 (d, J = 15.86 Hz, 1 H, CH2), 2.27 (s, 3 H, CH3), 0.97 (s, 3 H, CH3), 0.82-0.79 (t, J = 6.80, 7.02 Hz, 3 H, CH3), 0.76 (s, 3 H, CH3) ppm.

15

Synthesis of Ethyl 2,7,7-Trimethyl-4-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydroquinoline-3-carboxylate (6)
To a solvent of 5 and DME (30 mL) was added 2 N HNO3 aq. The mixture was heated to reflux under stirring for 12 h. Then, H2O and EtOH were added to the resulting solution. The light yellow crystals were formed and filtered to give the title compound with a yield of 98%; slight yellow solid; crystallized from EtOH; MS (FAB+): m/z = 388 [MH+]; mp 187.5-190.7 ˚C. IR (KBr): n = 1733 (CO) cm. ¹H NMR (400 MHz, CDCl3): d = 7.85-7.83 (d, J = 8.70 Hz, 1 H, HAr), 7.47-7.43 (dd, J = 6.87, 8.24 Hz, 1 H, HAr), 7.44-7.40 (dd, J = 6.87, 8.24 Hz, 1 H, HAr), 7.34-7.30 (td, J = 0.92, 0.92, 0.92, 8.24, 6.87, 7.56 Hz, 1 H, HAr), 7.25-7.21 (t, J = 8.24, 8.70, 8.47 Hz, 1 H, HAr), 7.16-7.14 (d, J = 6.87, 1 H, HAr), 3.70-3.65 (q, J = 7.33, 14.20 Hz, 1 H, HAr), 3.14-3.14 (d, J = 2.75 Hz, 2 H, CH2), 2.65 (s, 3 H, CH3), 2.39-2.37 (d, J = 5.95 Hz, 2 H, CH2), 1.13 (s, 3 H, CH3), 1.10 (s, 3 H, CH3), 0.42-0.39 (t, J = 6.87, 7.33 Hz, 3 H, CH3) ppm.

16

Synthesis of ( E )-Ethyl 5-(Hydroxyimino)-2,7,7-trimethyl-4-(naphthalen-1-yl)-5,6,7,8-tetrahydroquinoline-3-carboxylate (7)
Compound 6 was treated with NH2OH˙HCl in a mixture of EtOH and pyridine at reflux temperature for 2 d and gave the title compound with a yield of 96%; white solid; crystallized from EtOH; MS (FAB+): m/z = 403 [MH+]. mp 227.0-227.8 ˚C. IR (KBr): ν = 3448 (OH), 1776 (C=O), 1546 (C=N), 1020, 891 (NO) cm. ¹H NMR (400 MHz, CDCl3): δ = 7.85-7.82 (dd, J = 1.36, 7.25 Hz, 1 H, HAr), 7.46-7.40 (m, 2 H, HAr), 7.34-7.29 (m, 1 H, HAr), 7.23-7.21 (d, J = 8.15 Hz, 1 H, HAr), 7.16-7.13 (dd, J = 0.91, 1.36, 7.02 Hz, 1 H, HAr), 3.70-3.65 (q, J = 7.25, 6.80, 14.27 Hz, 2 H, CH2), 3.14-3.14 (d, J = 2.27 Hz, 2 H, CH2), 2.65 (s, 3 H, CH3), 2.39-2.37 (d, J = 5.89 Hz, 2 H, CH2), 1.13 (s, 3 H,CH3), 1.10 (s, 3 H,CH3), 0.43-0.40 (t, J = 6.80, 7.25 Hz, 3 H, CH3) ppm.

17

Synthesis of ( E )-Ethyl 5-(Acetoxyimino)-2,7,7-trimethyl-4-(naphthalen-1-yl)-5,6,7,8-tetrahydroquinoline-3-carboxylate (8)
Acetylation of 7 (0.497 g, 1.2 mmol) was performed with AcCl (0.16 g, 2.0 mmol) catalyzed by N,N-dimethyl-4-aminopyridine (DMAP, 0.10 g, 0.8 mmol) in dry toluene (20 mL) and dry pyridine (10 mL). The reaction mixture was stirred for 2 d. The resulting solvent was diluted with CHCl3. The organic phase was separated and washed with 10% HCl, sat. aq NaHCO3, brine, and dried over MgSO4. After filtration and evaporation the residue was chromatographed on SiO2 (1% MeOH in CHCl3, v/v) to afford 1 (0.44 g, 0.99 mmol) in 83% yield as red solid (mp 188.3-190.1 ˚C). MS (FAB+): m/z = 445 [MH+]. IR (KBr): ν = 3448 (OH), 1768 (C=O), 1546 (C=N), 1020, 891 (NO) cm. ¹H NMR (400 MHz, CDCl3): δ = 7.82-7.80 (d, J = 8.15 Hz, 1 H, HAr), 7.79-7.77 (d, J = 8.15 Hz, 1 H, HAr), 7.47-7.43 (dd, J = 6.80, 8.15 Hz, 1 H, HAr), 7.44-7.41 (m, J = 3.17, 2.27, 7.70 Hz, 1 H, HAr), 7.36-7.36 (d, J = 3.62 Hz, 1 H, HAr), 7.35 (s, 1 H, HAr), 7.23-7.21 (J = 6.80 Hz, 1 H, HAr), 2.96-2.96 (d, J = 2.27 Hz, 2 H, CH2), 2.66 (s, 2 H, CH2), 2.61 (s, 3 H, CH3), 1.11 (s, 3 H, CH3), 1.07 (s, 3 H, CH3), 0.44-0.41 (t, J = 7.25, 6.80, 7.02 Hz, 3 H, CH3).

18

Enzymatic Hydrolysis of (±)-8
In a typical experiment, lipase (40 mg) and n-BuOH (0.045 mmol) were added to a solution of O-acetyl ketoxime (±)-1 (20 mg, 0.045 mmol) and 2′-acetonaphthone (1.0 mg, standard substance) in MTBE (5 mL) and the resulting mixture was stirred at 30 ˚C. The reaction was monitored periodically using HPLC (column, GL Sciences Inertsil ODS-80TM; mobile phase, MeCN-H2O = 8:2; flow rate, 0.8 mL/min; UV detection at 254 nm). Upon completion, the reaction was terminated by removing the lipase via filtration. The lipase portion was washed with MTBE (15 mL). The filtrate and wash were combined, evaporated at 30 ˚C, and the resulting crude residue was purified using silica gel column chromatography with a mixture of CHCl3 and MeOH (100:1, v:v) as the eluent to yield the corresponding chiral O-acetyl ketoxime 8 and ketoxime 7.

19

The ee values were determined using chiral HPLC column (Daicel ChiralPAK IC; mobile phase, hexane-EtOH-TFA = 50:50:0.1; flow rate, 0.7 mL/min; UV detection at 254 nm).

20

The E values were calculated according to the literature (ref. [²²] ).

21

ROD and CD Spectra
Optical rotation of optical enantiomer (+)-7: [α]D ²² +110.73 (c 0.41, MeOH); optical rotation of optical enantiomer (-)-8: [α]D ²6 -109.33 (c 0.675, MeOH).