Subscribe to RSS
DOI: 10.1055/s-2008-1078594
Synthesis of Chiral Ethyl 5-(Acetoxyimino)-2,7,7-trimethyl-4-(1-naphthyl)-5,6,7,8-tetrahydroquinoline-3-carboxylate via Lipase-Catalyzed Hydrolysis
Publication History
Publication Date:
15 July 2008 (online)
Abstract
Novel racemic polyhydroquinoline derivatives were synthesized by a one-pot approach via a modified Hantzsch reaction and then by aromatization. The optical resolution was carried out by using lipase l-2 in MTBE containing one equivalent of butanol. This method allows the preparation of (+)-7 (>99% ee) and (-)-8 (99% ee) in 50% yield, respectively. The E value is up to 1175.
Key words
pyridine derivatives - oxime - axial chirality - hydrolysis - synthesis - asymmetric Hantzsch reaction
-
1a
Hantzsch A. Justus Liebigs Ann. Chem. 1882, 215: 1 -
1b
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 -
1c
Berson JA.Brown E. J. Am. Chem. Soc. 1955, 77: 444 -
1d
Dolle F.Hinnen F.Valette H.Fuseau C.Duval R.Peglion J.-L.Crouzel C. Bioorg. Med. Chem. 1997, 5: 749 -
1e
Dondoni A.Massi A.Minghini E.Sabbatini S.Bertolasi V. J. Org. Chem. 2003, 68: 6172 -
1f
Natale NR.Rogers ME.Staples R.Triggle DJ.Rutledge A. J. Med. Chem. 1999, 42: 3087 -
1g
Raboin J.-C.Kirsch G.Beley M. J. Heterocycl. Chem. 2000, 37: 1077 -
1h
Kürti L.Czakó B. Strategic Applications of Named Reactions in Organic Synthesis Elsevier Academic Press; Amsterdam: 2005. p.194 -
2a
Chai LZ.Zhao YK.Sheng QJ.Liu ZQ. Tetrahedron Lett. 2006, 47: 9283 -
2b
Peng LJ.Wang JT.Lu Z.Liu ZQ.Wu LM. Tetrahedron Lett. 2008, 49: 1586 -
2c
Kumar S.Sharma P.Kapoor KK.Hundal MS. Tetrahedron 2008, 64: 536 -
2d
Kikuchi S.Iwai Ma.Murayama H.Fukuzawa S. Tetrahedron Lett. 2008, 49: 116 - Synthesis of streptonigrin and its derivatives:
-
3a
Bringmann G.Reichert Y.Kane VV. Tetrahedron 2004, 60: 3539 -
3b
McElroy WT.DeShong P. Tetrahedron 2006, 62: 6945 -
4a
Trecourt F.Mallet M.Mongin O. J. Org. Chem. 1994, 59: 6137 -
4b
Kilama JJ.Iyengar BS.Remers WA. J. Heterocycl. Chem. 1990, 27: 1437 -
4c
Wittek PJ.Liao TK.Cheng CC. J. Org. Chem. 1979, 44: 870 -
4d
Weinreb SM.Basha FZ.Hibino S.Khatri NA.Kim D.Pye WE.Wu TT. J. Am. Chem. Soc. 1982, 104: 536 -
4e
Suzuki M.Iwasaki H.Fujikawa Y.Sakashita M.Kitahara M.Sakoda R. Bioorg. Med. Chem. Lett. 2001, 11: 1285 -
5a
Mizufune H,Matsumura U,Sera M,Tawada H, andUeda T. inventors; JP 232 819. -
5b
Cohen N,Lee FK, andYagaloff KA. inventors; WO Patent 028386. -
6a
Wang LM.Sheng J.Zhang L.Han JW.Fan ZY.Tian H.Qian CT. Tetrahedron 2005, 61, 1539 -
6b
Agrios K. inventors; WO 010164. -
6c
Natarajan SR.Wisnoski DD.Singh SB.Stelmach JE.O’Neill EA.Schwartz CD.Thompson CM.Fitzgerald CE.O’Keefe SJ.Kumar S.Hop CECA.Zaller DM.Schmatz DM.Doherty JB. Bioorg. Med. Chem. Lett. 2003, 13: 273 -
7a
Solodenko W.Brochwitz C.Wartchow R.Hashem MA.Dawood KM.Vaultier M.Kirschning A. Mol. Diversity 2005, 9: 333 -
7b
Botella L.Nájera C. J. Organomet. Chem. 2002, 663: 46 -
7c
Alonso DA.Botella L.Nájera C.Pacheco C. Synthesis 2004, 1713 -
7d
Milios CJ.Stamatatos TC.Perlepes SP. Polyhedron 2006, 25: 134 -
7e
Zhou YC.Kijima T.Izumi T. 14th IUPAC Symposium on Organometallic Chemistry Directed towards Organic Synthesis (OMCOS 14) Nara; Japan: 2007. - 8
Zhou YC.Kijima T.Kuwahara S.Watanabe M.Izumia T. Tetrahedron Lett. 2008, 49: 3757 - Mechanisum of the Hantzsch dihydropyridine synthesis:
-
9a
Katritzky AR.Ostercamp DL.Yousaf TI. Tetrahedron 1986, 42: 5729 -
9b
Katritzky AR.Ostercamp DL.Yousaf TI. Tetrahedron 1987, 43: 5171 -
9c
Bredenkamp MW.Holzapfel CW.Synman RM.Van Zyl WJ. Synth. Commun. 1992, 22: 3029 -
10a
Sharma SD.Hazarika P.Konwar D. Catal. Commun. 2008, 9: 709 -
10b
Kumar A.Maurya RA. Tetrahedron 2007, 63: 1946 -
10c
Loev B.Snader KM. J. Org. Chem. 1965, 30: 1914 -
10d
Reddy KK.Reddy CS.Yadav JS. Tetrahedron Lett. 2003, 44: 4129 -
10e
Ji SJ.Jiang ZQ.Lu J.Loh TP. Synlett 2004, 831 -
10f
Breitenbucher JG.Figliozzi G. Tetrahedron Lett. 2000, 41: 4311 -
10g
Dondoni A.Massi A.Minghini E.Bertolasi V. Tetrahedron 2004, 60: 2311 -
10h
Ko S.Yao CF. Tetrahedron 2006, 62: 7293 -
10i
Mehdipour AR.Javidnia K.Hemmateenejad B.Amirghofran Z.Miri R. Chem. Biol. Drug Des. 2007, 70: 337 -
10j
Fang XQ.Liu YC.Li CZ. J. Org. Chem. 2007, 72: 8608 -
10k
Murugan P.Hwang KC.Thirumalai D.Ramakrishnan VT. Synth. Commun. 2005, 35: 13 -
10l
Tolkunov SV.Khyzhan AI.Shishkina SV.Shishkin OV.Dulenko VI. Chem. Heterocycl. Compd. 2004, 40: 58 -
10m
Mashraqui SH.Karnik MA. Tetrahedron Lett. 1998, 39: 4895 -
10n
Nakamichi N.Kawashita Y.Hayashi M. Org. Lett. 2002, 4: 3955 -
10o
Yadav JS.Reddy BVS.Sabitha G.Reddy KK. Synthesis 2000, 1532 -
10p
Yadav JS.Reddy BVS.Basak AK.Baishya G.Narsaiah AV. Synthesis 2006, 451 -
10q
Han B.Liu Q.Liu ZG.Mu RZ.Zhang W.Liu ZL.Yu W. Synlett 2005, 2333 -
11a
Murakata M.Imai M.Tamura M.Hoshino O. Tetrahedron: Asymmetry 1994, 5: 2019 -
11b
Baldoli C.Maiorana S.Carreab G.Riva S. Tetrahedron: Asymmetry 1993, 4: 767 -
11c
Hirose Y.Kariya K.Sasaki I.Kurono Y.Ebiike H.Achiwa K. Tetrahedron Lett. 1992, 33: 7157 -
11d
Ebiike H.Terao Y.Achiwa K. Tetrahedron Lett. 1991, 32: 5808 -
11e
Pulido R.Ortiz FL.Gotor V. J. Chem. Soc., Perkin Trans. 1 1992, 2891 -
11f
Pulido R.Gotor V. Carbohydr. Res. 1994, 252: 55 -
11g
Aoyagi N.Ohwada T.Izumi T. Tetrahedron Lett. 2004, 45: 5189 - 22
Chen C.-S.Fujimoto Y.Girdaukas G.Sih CJ. J. Am. Chem. Soc. 1982, 104: 7294
References and Notes
Analytical-grade solvents and all chemicals were purchased from TCI Ltd. The ¹H NMR and ¹³C NMR spectra were measured with a JNM-ECS400 NMR spectrometer (400 MHz), JNM-ECS600 (600 MHz), Varian Mercury 200 (200 MHz), and Varian UNITY-INOVA 500 (500 MHz), respectively, in CHCl3-d 3 or DMSO solutions, and the chemical shifts are given relative to the residual solvent signal or TMS as internal standard. Mass spectra were recorded on a JOEL JMS-AX505HA and Shimadzu GCMS-QP5000 with GC-17A, respectively. The melting point was determined by MFB-595-030G digital thermometer apparatus. The IR spectra were recorded on a HORIBA FT-710 spectrometer. The UV/Vis spectra were recorded on a Hitachi U-2010 UV/Visible Spectrophotometer. The CD spectra were recorded on a JASCO J-720 spectrometer (L = 1 mm). Optical rotations were measured on a JASCO DIP-370 Digital Polarimeter.
13
General One-Pot
Procedure
To a mixture of MeOH (30 mL) and toluene
(30 mL), ethyl acetoactate (5.20 g, 40 mmol), 1-naphthaldehyde (6.24
g, 40 mmol), dimedone (5.60 g, 40 mmol), and NH4OAc (3.24
g, 42 mmol) were added. The mixture was heated to reflux under stirring
for 24 h. The resulting solution was worked up by azeotropic distillation
to separate off all toluene, to which then H2O (3 mL)
was added. The resulting solvent was kept refluxing for another
24 h and then allowed to cool to r.t. The crystals were formed and
filtered to give the product.
Synthesis of Ethyl
2,7,7-trimethyl-4-(naphthalen-1-yl)-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylate (5)
Using the one-pot procedure,
the light yellow crystals were formed and filtered to give the title
compound with a yield of 96%; slight yellow solid; crystallized
from EtOH; MS (FAB+): m/z = 390 [MH+];
mp 194.0-195.7 ˚C. IR (KBr):
ν = 3324
(NH), 1697 (CO) cm-¹. ¹H
NMR (400 MHz, DMSO): δ = 9.11 (s, 1 H, NH), 8.63-8.61
(d, J = 8.61
Hz, 1 H, HAr), 7.76-7.74 (d, J = 8.15
Hz, 1 H, HAr), 7.63-7.61 (d, 1 H, HAr), 7.50-7.46
(dd, J = 7.25,
7.70 Hz, 1 H, HAr), 7.42-7.38 (dd, J = 7.25,
7.25 Hz, 1 H, HAr), 7.33 (s, 1 H, HAr), 5.60 (s, 1 H, OH), 3.81-3.62
(qq, qq, 2 H, CH2), 2.46-2.42 (d, J = 17.22
Hz, 1 H, CH2), 2.31-2.27 (d, J = 13.59
Hz, 1 H, CH2), 2.12-2.08 (d, J = 16.31
Hz, 1 H, CH2), 1.85-1.81 (d, J = 15.86
Hz, 1 H, CH2), 2.27 (s, 3 H, CH3), 0.97 (s,
3 H, CH3), 0.82-0.79 (t, J = 6.80,
7.02 Hz, 3 H, CH3), 0.76 (s, 3 H, CH3) ppm.
Synthesis of Ethyl
2,7,7-Trimethyl-4-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydroquinoline-3-carboxylate (6)
To a solvent of 5 and
DME (30 mL) was added 2 N HNO3 aq. The mixture was heated
to reflux under stirring for 12 h. Then, H2O and EtOH
were added to the resulting solution. The light yellow crystals
were formed and filtered to give the title compound with a yield
of 98%; slight yellow solid; crystallized from EtOH; MS
(FAB+): m/z = 388 [MH+];
mp 187.5-190.7 ˚C. IR (KBr): n = 1733
(CO) cm-¹. ¹H NMR (400
MHz, CDCl3): d = 7.85-7.83 (d, J = 8.70 Hz,
1 H, HAr), 7.47-7.43 (dd, J = 6.87,
8.24 Hz, 1 H, HAr), 7.44-7.40 (dd, J = 6.87,
8.24 Hz, 1 H, HAr), 7.34-7.30 (td, J = 0.92,
0.92, 0.92, 8.24, 6.87, 7.56 Hz, 1 H, HAr), 7.25-7.21
(t, J = 8.24, 8.70,
8.47 Hz, 1 H, HAr), 7.16-7.14 (d, J = 6.87,
1 H, HAr), 3.70-3.65 (q, J = 7.33,
14.20 Hz, 1 H, HAr), 3.14-3.14 (d, J = 2.75 Hz,
2 H, CH2), 2.65 (s, 3 H, CH3), 2.39-2.37
(d, J = 5.95
Hz, 2 H, CH2), 1.13 (s, 3 H, CH3), 1.10 (s,
3 H, CH3), 0.42-0.39 (t, J = 6.87,
7.33 Hz, 3 H, CH3) ppm.
Synthesis of (
E
)-Ethyl 5-(Hydroxyimino)-2,7,7-trimethyl-4-(naphthalen-1-yl)-5,6,7,8-tetrahydroquinoline-3-carboxylate (7)
Compound 6 was
treated with NH2OH˙HCl in a mixture of EtOH
and pyridine at reflux temperature for 2 d and gave the title compound
with a yield of 96%; white solid; crystallized from EtOH;
MS (FAB+): m/z = 403 [MH+].
mp 227.0-227.8 ˚C. IR (KBr): ν = 3448
(OH), 1776 (C=O), 1546 (C=N), 1020, 891 (NO) cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.85-7.82
(dd, J = 1.36,
7.25 Hz, 1 H, HAr), 7.46-7.40 (m, 2 H, HAr),
7.34-7.29 (m, 1 H, HAr), 7.23-7.21
(d, J = 8.15
Hz, 1 H, HAr), 7.16-7.13 (dd, J = 0.91,
1.36, 7.02 Hz, 1 H, HAr), 3.70-3.65 (q, J = 7.25,
6.80, 14.27 Hz, 2 H, CH2), 3.14-3.14 (d, J = 2.27 Hz,
2 H, CH2), 2.65 (s, 3 H, CH3), 2.39-2.37
(d, J = 5.89
Hz, 2 H, CH2), 1.13 (s, 3 H,CH3), 1.10 (s,
3 H,CH3), 0.43-0.40 (t, J = 6.80,
7.25 Hz, 3 H, CH3) ppm.
Synthesis of (
E
)-Ethyl 5-(Acetoxyimino)-2,7,7-trimethyl-4-(naphthalen-1-yl)-5,6,7,8-tetrahydroquinoline-3-carboxylate (8)
Acetylation of 7 (0.497
g, 1.2 mmol) was performed with AcCl (0.16 g, 2.0 mmol) catalyzed
by N,N-dimethyl-4-aminopyridine
(DMAP, 0.10 g, 0.8 mmol) in dry toluene (20 mL) and dry pyridine
(10 mL). The reaction mixture was stirred for 2 d. The resulting
solvent was diluted with CHCl3. The organic phase was
separated and washed with 10% HCl, sat. aq NaHCO3,
brine, and dried over MgSO4. After filtration and evaporation
the residue was chromatographed on SiO2 (1% MeOH
in CHCl3, v/v) to afford 1 (0.44
g, 0.99 mmol) in 83% yield as red solid (mp 188.3-190.1 ˚C).
MS (FAB+): m/z = 445 [MH+].
IR (KBr): ν = 3448 (OH), 1768 (C=O),
1546 (C=N), 1020, 891 (NO) cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.82-7.80
(d, J = 8.15
Hz, 1 H, HAr), 7.79-7.77 (d, J = 8.15
Hz, 1 H, HAr), 7.47-7.43 (dd, J = 6.80,
8.15 Hz, 1 H, HAr), 7.44-7.41 (m, J = 3.17,
2.27, 7.70 Hz, 1 H, HAr), 7.36-7.36 (d, J = 3.62 Hz,
1 H, HAr), 7.35 (s, 1 H, HAr), 7.23-7.21
(J = 6.80
Hz, 1 H, HAr), 2.96-2.96 (d, J = 2.27
Hz, 2 H, CH2), 2.66 (s, 2 H, CH2), 2.61 (s,
3 H, CH3), 1.11 (s, 3 H, CH3), 1.07 (s, 3
H, CH3), 0.44-0.41 (t, J = 7.25,
6.80, 7.02 Hz, 3 H, CH3).
Enzymatic Hydrolysis
of (±)-8
In a typical experiment, lipase
(40 mg) and n-BuOH (0.045 mmol) were
added to a solution of O-acetyl ketoxime
(±)-1 (20 mg, 0.045 mmol) and
2′-acetonaphthone (1.0 mg, standard substance) in MTBE
(5 mL) and the resulting mixture was stirred at 30 ˚C.
The reaction was monitored periodically using HPLC (column, GL Sciences
Inertsil ODS-80TM; mobile phase, MeCN-H2O = 8:2;
flow rate, 0.8 mL/min; UV detection at 254 nm). Upon completion,
the reaction was terminated by removing the lipase via filtration. The
lipase portion was washed with MTBE (15 mL). The filtrate and wash
were combined, evaporated at 30 ˚C, and the resulting crude
residue was purified using silica gel column chromatography with
a mixture of CHCl3 and MeOH (100:1, v:v) as the eluent
to yield the corresponding chiral O-acetyl
ketoxime 8 and ketoxime 7.
The ee values were determined using chiral HPLC column (Daicel ChiralPAK IC; mobile phase, hexane-EtOH-TFA = 50:50:0.1; flow rate, 0.7 mL/min; UV detection at 254 nm).
20The E values were calculated according to the literature (ref. [²²] ).
21
ROD and CD Spectra
Optical
rotation of optical enantiomer (+)-7: [α]D
²² +110.73 (c 0.41, MeOH); optical rotation of optical
enantiomer (-)-8: [α]D
²6 -109.33
(c 0.675, MeOH).