Subscribe to RSS
DOI: 10.1055/s-2001-15509
Hyperforin Stimulates Intracellular Calcium Mobilisation and Enhances Extracellular Acidification in DDT1-MF2 Smooth Muscle Cells
Publication History
Publication Date:
31 December 2001 (online)
Hyperforin, an acylphloroglucinol derivative, is a major constituent of St. John’s wort extract (Hypericum perforatum L.), which is used in treating depressive disorders. Hyperforin has been demonstrated as a modulator of several neuronal ion channels, and inhibits smooth-muscle contraction induced by various neurotransmitters. To evaluate the spasmolytic properties of hyperforin in more detail, we performed studies on the hamster vas deferens smooth muscle cell line DDT1-MF2. In a first series of experiments, we determined the effect of hyperforin on intracellular Ca2+ concentration ([Ca2+]i) using the fluorochrome fura-2. These investigations were supplemented in a second series of assays, where the effects on cellular metabolism were analysed by measuring the rate of extracellular release of acidic metabolites with the help of a microphysiometer. Hyperforin (0.3 - 10 µg/ml) caused a concentration-dependent elevation of [Ca2+]i and extracellular acidification rate (ECAR). Both of these effects were independent of extracellular Ca2+. To elucidate whether the increase of [Ca2+]i by hyperforin causes or results from its ECAR-stimulating properties, we used various pharmacological tools to reveal the sequence of events and the molecular mechanisms involved. Our results suggest that hyperforin induces release of Ca2+ from as yet unidentified sources. Since the ECAR stimulation was inhibited to a different extent by the intracellular Ca2+ chelator BAPTA as well as by inhibitors of plasmalemmal and mitochondrial Na+/Ca+ exchange, but not by inhibitors of Na+/H+ antiport, the intracellular Ca2+ increase seems to be essential for this hyperforin effect. However, further studies are needed to establish the exact mode of action, and to deduce whether this aspect of hyperforin activity contributes to its antidepressant and neuroprotective effects.
References
- 1 Bhattacharya S K, Chakrabarti A, Chatterjee S S. Activity profiles of two hyperforin-containing hypericum extracts in behavioral models. Pharmacopsychiatry. 1998; 31 ((Suppl. 1)) 22-29
- 2 Chatterjee S S, Bhattacharya S K, Wonnemann M, Singer A, Müller W E. Hyperforin as a possible antidepressant component of hypericum extracts. Life Sci. 1998; 63 499-510
- 3 Chatterjee S S, Filippov V, Lishko P, Maximyuk O, Nöldner M, Krishtal O. Hyperforin attenuates various ionic conductance mechanisms in the isolated hippocampal neurons of rat. Life Sci. 1999; 65 2395-2405
- 4 Chatterjee S S, Nöldner M, Koch E, Erdelmeier C. Antidepressant activity of hypericum perforatum and hyperforin: the neglected possibility. Pharmacopsychiatry. 1998; 31 ((Suppl. 1)) 7-15
- 5 Egger M, Niggli E. Regulatory function of Na-Ca exchange in the heart: milestones and outlook. J Membr Biol. 1999; 168 107-130
- 6 Kaehler S T, Sinner C, Chatterjee S S, Philippu A. Hyperforin enhances the extracellular concentrations of catecholamines, serotonin and glutamate in the rat locus coeruleus. Neurosci Lett. 1999; 262 199-202
- 7 Kobayashi Y, Pang T, Iwamoto T, Wakabayashi S, Shigekawa M. Lithium activates mammalian Na+/H+ exchangers: isoform specificity and inhibition by genistein. Pflügers Arch - Eur J Physiol. 2000; 439 455-462
- 8 Laakmann G, Schule C, Baghai T, Kieser M. St. John’s wort in mild to moderate depression: the relevance of hyperforin for the clinical efficacy. Pharmacopsychiatry. 1998; 31 ((Suppl. 1)) 54-59
- 9 McConnell H M, Owicki J C, Parce J W, Miller D L, Baxter G T, Wada H G. et al . The cytosensor microphysiometer: biological applications of silicon technology. Science. 1992; 257 1906-1912
- 10 Müller W E, Singer A, Wonnemann M, Hafner U, Rolli M, Schäfer C. Hyperforin represents the neurotransmitter reuptake inhibiting constituent of hypericum extract. Pharmacopsychiatry. 1998; 31 ((Suppl. 1)) 16-21
- 11 Orlowski J, Ginstein S. Na+/H+ exchangers of mammalian cells. J Biol Chem. 1997; 273 22 373-22 376
- 12 Singer A, Wonnemann M, Müller W E. Hyperforin, a major antidepressant constituent of St. John’s Wort, inhibits serotonin uptake by elevating free intracellular Na+. . J Pharmacol Exp Therap. 1999; 290 1363-1368
Dr. E. Koch
Department of Pharmacology
Dr. Willmar Schwabe GmbH & Co., Arzneimittel
Dr. Willmar-Schwabe-Straße 4
76227 Karlsruhe
Germany