Synlett 2024; 35(02): 183-195
DOI: 10.1055/s-0042-1751461
account

Palladium-Catalyzed Acylation Strategies and Their Applications Towards Biologically Relevant Products

Chinnabattigalla Sreenivasulu
,
Dakoju Ravi Kishore
,
Suchand Basuli
,
The authors gratefully acknowledge financial support from the Indian Institute of Technology Hyderabad. C.B.S. and D.R.K. thank the University Grants Commission (UGC) New Delhi for providing fellowships. D.R.K. and S.B. thank the Ministry of Human Resource and Development (MHRD) for fellowships.


Abstract

Ketones are fundamental synthons in organic synthesis due to their wide range of applications, which include natural products, pharmaceuticals, dyes, fragrances, agrochemicals, and electronic materials. In recent years, direct acylation strategies based on commercially available benchtop aryl halides and aldehydes (alkyl/aryl) have been the prime focus for the construction of alkyl-aryl/aryl-aryl ketones using palladium catalysis under eco-friendly reaction conditions. In this account, we present conceptually developed palladium-catalyzed direct acylation strategies for achieving various carbo- and heterocycles such as ketones, 2-quinolinones, phthalazines, phthalazinones, benzoxazinones, anthraquinones, indenones, and 1,3-dihydroisobenzofurans. Significantly, these direct acylation strategies have been extended to synthesize the natural product neo-lignan and biologically significant molecules such as an n-butylphthalide antiplatelet drug, pitofenone, fenofibrate, a HBV inhibitor, and a PDE-4 inhibitor. This Account will be of interest to synthetic organic chemists wishing to prepare pharmaceutical molecules and natural products.

1 Introduction

2 Discussion

2.1 Palladium-Catalyzed Environmentally Compassionate Acylation

2.2 Palladium-Catalyzed Acylations Followed by Intramolecular Aldol Condensation to Afford Indenones

2.3 Acylation of Iodo-acetanilides/Iodo-phenyl Acetates: Sequential One-Pot Syntheses of 2-Quinolinones

2.4 A One-Pot Diversified Synthesis of Phthalazines, Phthalazinones, and Benzoxazinones

2.5 Palladium-Catalyzed Direct Acylation: A One-Pot Relay Synthesis of Anthraquinones

2.6 Palladium-Catalyzed Direct Oxidative Coupling of Primary Alcohols with Iodoarenes Leading to Ketones: Application to the Synthesis of Benzofuranones and Indenones

3 Conclusion



Publikationsverlauf

Eingereicht: 23. März 2023

Angenommen nach Revision: 03. Mai 2023

Artikel online veröffentlicht:
05. Juni 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Beller M. Chem. Rev. 2019; 119: 2089
  • 2 Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Chem. Rev. 2022; 122: 3180
  • 3 Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
  • 4 Chemler SR. Beilstein J. Org. Chem. 2015; 11: 2252
  • 5 Nájera C, Beletskaya IP, Yus M. Chem. Soc. Rev. 2019; 48: 4515
  • 6 Kim UB, Jung DJ, Jeon HJ, Rathwell K, Lee S. Chem. Rev. 2020; 120: 13382
  • 7 Ojima I, Tzamarioudaki M, Li Z, Donovan RJ. Chem. Rev. 1996; 96: 635
  • 8 Jun C.-H. Chem. Soc. Rev. 2004; 33: 610
  • 9 Zhou Q.-L. Angew. Chem. Int. Ed. 2016; 55: 5352
  • 10 Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
  • 11 Gandeepan P, Cheng C.-H. Chem. Asian J. 2015; 10: 824
  • 12 Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
  • 13 Heck RF. J. Am. Chem. Soc. 1968; 90: 5518
  • 14 Heck RF. J. Am. Chem. Soc. 1968; 90: 5531
  • 15 Heck RF. J. Am. Chem. Soc. 1968; 90: 5538
  • 16 Heck RF. J. Am. Chem. Soc. 1968; 90: 5542
  • 17 Negishi E, King AO, Okukado N. J. Org. Chem. 1977; 42: 1821
  • 18 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 19 Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387
  • 20 Heck RF. J. Am. Chem. Soc. 1968; 90: 5526
  • 21 Holman KR, Stanko AM, Reisman SE. Chem. Soc. Rev. 2021; 50: 7891
  • 22 Chinnabattigalla S, Choudhury A, Gedu S. Org. Biomol. Chem. 2021; 19: 8259
  • 23 Kishore DR, Satyanarayana G. J. Org. Chem. 2022; 87: 10158
  • 24 Kishore DR, Sreenivasulu C, Dapkekar AB, Satyanarayana G. SynOpen 2022; 6: 179
  • 25 Ahmad MS, Meguellati K. ChemistrySelect 2022; 7: e202103716
  • 26 Azeem Z, Mandal PK. Org. Biomol. Chem. 2022; 20: 264
  • 27 Mei T.-S, Kou L, Ma S, Engle KM, Yu J.-Q. Synthesis 2012; 44: 1778
  • 28 Naksomboon K, Valderas C, Gómez-Martínez M, Álvarez-Casao Y, Fernández-Ibáñez M. Á. ACS Catal. 2017; 7: 6342
  • 29 Liu X.-H, Park H, Hu J.-H, Hu Y, Zhang Q.-L, Wang B.-L, Sun B, Yeung K.-S, Zhang F.-L, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 888
  • 30 Rani G, Luxami V, Paul K. Chem. Commun. 2020; 56: 12479
  • 31 Dey A, Agasti S, Maiti D. Org. Biomol. Chem. 2016; 14: 5440
  • 32 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
  • 33 Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
  • 34 Garrett CE, Prasad K. Adv. Synth. Catal. 2004; 346: 889
  • 35 Rayadurgam J, Sana S, Sasikumar M, Gu Q. Org. Chem. Front. 2021; 8: 384
  • 36 Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
  • 37 Rao LB, Sreenivasulu C, Kishore DR, Satyanarayana G. Tetrahedron 2022; 127: 133093
  • 38 Sreenivasulu C, Satyanarayana G. J. Org. Chem. 2022; 87: 2222
  • 39 Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
  • 40 Pace V, Castoldi L, Holzer W. J. Org. Chem. 2013; 78: 7764
  • 41 Zacuto MJ, Dunn RF, Figus M. J. Org. Chem. 2014; 79: 8917
  • 42 Kerr WJ, Morrison AJ, Pazicky M, Weber T. Org. Lett. 2012; 14: 2250
  • 43 De Luca L, Giacomelli G, Taddei M. J. Org. Chem. 2001; 66: 2534
  • 44 Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
  • 45 Sartori G, Maggi R. Chem. Rev. 2006; 106: 1077
  • 46 Gore PH. Chem. Rev. 1955; 55: 229
  • 47 Tuulmets A, Nguyen BT, Panov D. J. Org. Chem. 2004; 69: 5071
  • 48 Keinicke L, Fristrup P, Norrby P.-O, Madsen R. J. Am. Chem. Soc. 2005; 127: 15756
  • 49 Molle G, Bauer P. J. Am. Chem. Soc. 1982; 104: 3481
  • 50 Wang H, Guo L.-N, Duan X.-H. Org. Lett. 2012; 14: 4358
  • 51 Zhou W, Li H, Wang L. Org. Lett. 2012; 14: 4594
  • 52 Solé D, Mariani F. J. Org. Chem. 2013; 78: 8136
  • 53 Laha JK, Patel KV, Sharma S. ACS Omega 2017; 2: 3806
  • 54 Song H, Chen D, Pi C, Cui X, Wu Y. J. Org. Chem. 2014; 79: 2955
  • 55 Hossian A, Manna MK, Manna K, Jana R. Org. Biomol. Chem. 2017; 15: 6592
  • 56 Xiao F, Shuai Q, Zhao F, Baslé O, Deng G, Li C.-J. Org. Lett. 2011; 13: 1614
  • 57 Stille JK. Angew. Chem., Int. Ed. Engl. 1986; 25: 508
  • 58 Dubbaka SR, Vogel P. J. Am. Chem. Soc. 2003; 125: 15292
  • 59 Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
  • 60 Huang Y.-C, Majumdar KK, Cheng C.-H. J. Org. Chem. 2002; 67: 1682
  • 61 Ahlburg A, Lindhardt AT, Taaning RH, Modvig AE, Skrydstrup T. J. Org. Chem. 2013; 78: 10310
  • 62 Ruan J, Li X, Saidi O, Xiao J. J. Am. Chem. Soc. 2008; 130: 2424
  • 63 Zhao M.-N, Ran L, Chen M, Ren Z.-H, Wang Y.-Y, Guan Z.-H. ACS Catal. 2015; 5: 1210
  • 64 Neumann H, Brennführer A, Beller M. Chem. Eur. J. 2008; 14: 3645
  • 65 Negishi E, Miller JA. J. Am. Chem. Soc. 1983; 105: 6761
  • 66 Ishiyama T, Kizaki H, Hayashi T, Suzuki A, Miyaura N. J. Org. Chem. 1998; 63: 4726
  • 67 Wu X.-F, Neumann H, Beller M. Angew. Chem. 2010; 122: 5412
  • 68 Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
  • 69 Xu T, Alper H. Org. Lett. 2015; 17: 4526
  • 70 Wakeham RJ, Taylor JE, Bull SD, Morris JA, Williams JM. J. Org. Lett. 2013; 15: 702
  • 71 Wu X.-F, Anbarasan P, Neumann H, Beller M. Angew. Chem. 2010; 122: 7474
  • 72 Dong K, Fang X, Jackstell R, Laurenczy G, Li Y, Beller M. J. Am. Chem. Soc. 2015; 137: 6053
  • 73 Li X, Li X, Jiao N. J. Am. Chem. Soc. 2015; 137: 9246
  • 74 Quesnel JS, Arndtsen BA. J. Am. Chem. Soc. 2013; 135: 16841
  • 75 Ruan J, Saidi O, Iggo JA, Xiao J. J. Am. Chem. Soc. 2008; 130: 10510
  • 76 Takemiya A, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 14800
  • 77 Suchand B, Satyanarayana G. J. Org. Chem. 2016; 81: 6409
  • 78 Suchand B, Satyanarayana G. J. Org. Chem. 2017; 82: 372
  • 79 Basuli S, Satyanarayana G. Eur. J. Org. Chem. 2018; 957
  • 80 Suchand B, Satyanarayana G. Eur. J. Org. Chem. 2018; 2233
  • 81 Suchand B, Satyanarayana G. Synthesis 2019; 51: 769
  • 82 Suchand B, Sreenivasulu C, Satyanarayana G. Eur. J. Org. Chem. 2019; 4832