Thromb Haemost 1994; 72(02): 166-179
DOI: 10.1055/s-0038-1648834
Review Article
Schattauer GmbH Stuttgart

A Database of Recombinant Wild-type and Mutant Serpins[*]

Phillip A Patston
1   The Division of Hematology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
,
Peter G W Gettins
2   Department of Biochemistry, University of Illinois-Chicago, Chicago, IL, USA
› Author Affiliations
Further Information

Publication History

Received 02 March 1994

Accepted after revision 26 April 1994

Publication Date:
24 July 2018 (online)

* Supported by NIH grants HL49242 (P. A. P.) and HL49234 (P. G. W. G.)


 
  • References

  • 1 Schechter I, Berger A. On the size of the active site of proteases. Biochem Biophys Res Commun 1967; 27: 157-162
  • 2 Hunt LT, Dayhoff MO. A surprising new protein superfamily containing ovalbumin, antithrombin III and α1-proteinase inhibitor. Biochem Biophys Res Commun 1980; 95: 864-871
  • 3 Huber R, Carrell RW. Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry 1989; 28: 8951-8966
  • 4 Loebermann H, Tokuoka R, Deisenhofer J, Huber R. Human α1-proteinase inhibitor. Crystal structure analysis of two crystal modifications and preliminary analysis of the implications for function. J Mol Biol 1984; 177: 731-757
  • 5 Mourey L, Samama JP, Delarue M, Petitou M, Choay J, Moras D. Crystal structure of cleaved bovine antithrombin-III at 3.2-Ångstrom resolution. J Mol Biol 1993; 232: 223-241
  • 6 Katz DS, Wei A, Zhong Q, Rubin H, Cooperman BS, Christianson DW. Crystallization and atomic resolution X-ray diffraction analysis of antichymotrypsin variants. Biochem Biophys Res Commun 1993; 196: 752-757
  • 7 Baumann U, Bode W, Huber R, Travis J, Potempa J. Crystal structure of cleaved equine leucocyte elastase inhibitor determined at 1.95Å resolution. J Mol Biol 1992; 226: 1207-1218
  • 8 Stein PE, Leslie AGW, Finch JT, Carrell RW. Crystal structure of uncleaved ovalbumin at 1.95Å resolution. J Mol Biol 1991; 221: 941-959
  • 9 Baumann U, Huber R, Bode W, Grosse D, Lesjak M, Laurell CB. Crystal structure of cleaved arantichymotrypsin at 2.7 Å resolution and its comparison with other serpins. J Mol Biol 1991; 218: 595-606
  • 10 Stein PE, Leslie AGW, Finch JT, Turnell WG, McLaughlin PJ, Carrell RW. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 1990; 347: 099-102
  • 11 Wright HT, Qian HX, Huber R. Crystal structure of plakalbumin, a pro-teolytically nicked form of ovalbumin. Its relationship to the structure of cleaved α1-proteinase inhibitor. J Mol Biol 1990; 213: 513-528
  • 12 Mottonen J, Strand A, Symersky J, Sweet RM, Daniey DE, Georgnegan KF, Gerard RD, Goldsmith EJ. Structural basis of latency in plasminogen activator inhibitor 1. Nature 1992; 255: 270-273
  • 13 Schreuder HA, de Boer B, Dijkema R, Mulders J, Theunissen HJM, Grootenhuis PDJ, Hol WGJ. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature Struct Biol 1994; 1: 48-54
  • 14 Carrell RW, Travis J. α1-Antitrypsin and the serpins. Variation and countervariation. Trends Biol Sci 1985; 10: 20-24
  • 15 Creighton TE. Up the kinetic pathway. Nature 1992; 356: 194-195
  • 16 Carrell RW, Evans DL, Stein PE. Mobile reactive centre of serpins and the control of thrombosis. Nature 1991; 353: 576-578
  • 17 Carrell RW, Evans DL, Stein PE. Mobile reactive centre of serpins and the control of thrombosis. Erratum. Nature 1993; 364: 737
  • 18 Errington DM, Bathurst IC, Janus ED, Carrell RW. In vitro synthesis of M and Z forms of human α1-antitrypsin. FEBS Lett 1982; 148: 83-86
  • 19 Bollen A, Herzog A, Cravador A, Hérion P, Chuchana P, Straten AV, Loriau R, Jacobs P, Van Elsen A. Cloning and expression in Escherichia coli of full-length complementary DNA coding for human α1-antitrypsin. DNA 1983; 2: 255-264
  • 20 Courtney M, Buchwalder A, Tessier L-H, Jaye M, Benavente A, Balland A, Kohli V, Lathe R, Tolstoshev P, Lecocq J-P. High-level production of biologically active human α1-antitrypsin in Escherichia coli . Proc Natl Acad Sci USA 1984; 81: 669-673
  • 21 Strauss SD, Fells GA, Wewers MD, Courtney M, Tessier L-H, Tolstoshev P, Lecocq J-P, Crystal RG. Evaluation of recombinant DNA-directed E. coli produced α1-antitrypsin as an antineutrophil elastase for potential use as replacement therapy of α1-antitrypsin deficiency. Biochem Biophys Res Commun 1985; 130: 1177-1184
  • 22 Tessier L-H, Jallat S, Sauvageot M, Crystal RG, Courtney M. RNA structural elements for expression in Escherchia coli. α1-antitrypsin synthesis using translation control elements based on the cII ribosome-binding site of phage λ. FEBS Lett 1986; 208: 183-188
  • 23 Courtney M, Jallat S, Tessier L-H, Benavente A, Crystal RG, Lecoq J-P. Synthesis in E. coli of α1-antitrypsin variants of therapeutic potential for emphysema and thrombosis. Nature 1985; 313: 149-151
  • 24 Rinehart AR, Mallya S, Simon SR. Human α1-proteinase inhibitor binds to extracellular matrix in vitro. Am J Resp Cell Mol Biol 1993; 9: 666-679
  • 25 Rosenberg S, Barr PJ, Najarian RC, Hallewell RA. Synthesis in yeast of a functional oxidation-resistant mutant of human α1-antitrypsin. Nature 1984; 312: 77-80
  • 26 Travis J, Owen M, George P, Carrell R, Rosenberg S, Hallewell RA, Barr PJ. Isolation and properties of recombinant DNA produced variants of human α1-proteinase inhibitor. J Biol Chem 1985; 260: 4384-4389
  • 27 Janoff A, George-Nasciemento C, Rosenberg S. A genetically engineered mutant human alpha-1-proteinase inhibitor is more resistant than the normal inhibitor to oxidative inactivation by chemicals, enzymes, cells, and cigarette smoke. Am Rev Respir Dis 1986; 133: 353-356
  • 28 Matheson NR, van Halbeek H, Travis J. Evidence for a tetrahedral intermediate complex during serpin-proteinase interactions. J Biol Chem 1991; 266: 13489-13491
  • 29 Foreman RC, Judah JD, Colman A. Xenopus oocytes can synthesize but do not secrete the Z variant of human α1-antitrypsin. FEBS Lett 1984; 168: 84-88
  • 30 Verbanac KM, Heath EC. Biosynthesis, processing, and secretion of M and Z variant human α1-antitrypsin. J Biol Chem 1986; 261: 9979-9989
  • 31 Ciliberto G, Dente L, Cortese R. Cell-specific expression of a transfected human α1-antitrypsin gene. Cell 1985; 41: 531-540
  • 32 Gilardi P, Courtney M, Pavirani A, Perricaudet M. Expression of human α1-antitrypsin using a recombinant adenovirus vector. FEBS Lett 1990; 267: 60-62
  • 33 Lemarchand P, Jaffe HA, Danel C, Cid MC, Kleinman HK, Stratford-Perricaudet L, Pavarini A, Lecoq J-P, Crystal RG. Adenovirus-mediated transfer of a recombinant human α1-antitrypsin cDNA to human endothelial cells. Proc Natl Acad Sci USA 1992; 89: 6482-6486
  • 34 Garver Jr RI, Chytil A, Karlsson S, Fells GA, Brantly ML, Courtney M, Kantoff PW, Niennuis AW, Anderson WF, Crystal RG. Production of glycosylated physiologically “normal” human α1-antitrypsin by mouse fibroblasts modified by insertion of a human α1-antitrypsin cDNA using a retroviral vector. Proc Natl Acad Sci USA 1987; 84: 1050-1054
  • 35 Garver Jr RI, Chytil A, Courtney M, Crystal RG. Clonal gene therapy: Transplanted mouse fibroblast clones express human α1-antitrypsin gene in vivo. Science 1987: 762-764
  • 36 Curiel DT, Holmes MD, Okayama H, Brantly ML, Vogelmeier C, Travis WD, Stier LE, Perks WH, Crystal RG. Molecular basis of the liver and lung disease associated with the α1-antitrypsin allele Mmalton . J Biol Chem 1989; 264: 13938-13945
  • 37 Lemarchand P, Jones M, Yamada I, Crystal RG. In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors. Circulation Research 1993; 72: 1132-1138
  • 38 Bajocchi G, Feldman SH, Crystal RG, Mastrangeli A. Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nature Genetics 1993; 3: 229-234
  • 39 Carlson JA, Rogers BB, Sifers RN, Hawkins HK, Finegold MJ, Woo SLC. Multiple tissues express alpha-1-antitrypsin in transgenic mice and man. J Clin Invest 1988; 82: 26-36
  • 40 Samandari T, Brown JL. A study of the effects of altering the sites for N-glycosylation in alpha-1-proteinase inhibitor variant-M and variant-S. Prot Sci 1993; 2: 1400-1410
  • 41 Powell LM, Pain RH. Effects of glycosylation on the folding and stability of human, recombinant and cleaved arantitrypsin. J Mol Biol 1992; 224: 241-252
  • 42 Jallat S, Carvallo D, Tessier LH, Roecklin D, Roitsch C, Ogushi F, Crystal RG, Courtney M. Altered specificities of genetically engineered α1 antitrypsin variants. Prot Eng 1986; 1: 29-35
  • 43 George PM, Vissers MCM, Travis J, Winterboum CC, Carrell RW. A genetically engineered mutant of α1-antitrypsin protects connective tissue from neutrophil damage and may be useful in lung disease. Lancet 1984; 1426-1428
  • 44 Heeb MJ, Bischoff R, Courtney M, Griffin JH. Inhibition of activated protein C by recombinant α1-antitrypsin variants with substitution of arginine or leucine for methionine. J Biol Chem 1990; 265: 2365-2369
  • 45 Patston PA, Roodi N, Schifferli JA, Bischoff R, Courtney M, Schapira M. Reactivity of α1-antitrypsin mutants against proteolytic enzymes of the kallikrein-kinin, complement, and fibrinolytic systems. J Biol Chem 1990; 265: 10786-10791
  • 46 Van Dorsselaer A, Bitsch F, Green B, Jarvis S, Lepage P, Bischoff R, Kolbe HVJ, Roitsch C. Application of electrospray mass spectrometry to the characterization of recombinant proteins up to 44 kDa. Biomed Environ Mass Spectrometry 1990; 19: 692-704
  • 47 Bischoff R, Speck D, Lepage P, Delatre L, Ledoux C, Brown SW, Roitsch C. Purification and biochemical characterization of recombinant at-antitrypsin variants expressed in Escherichia coli . Biochemistry 1991; 30: 3464-3472
  • 48 Matheson NR, Gibson HL, Hallewell RA, Barr PJ, Travis J. Recombinant DNA-derived forms of human α1-proteinase inhibitor. Studies on the alanine 358 and cysteine 358 substituted mutants. J Biol Chem 1986; 261: 10404-10409
  • 49 Schapira M, Ramus M-A, Jallat S, Carvallo D, Courtney M. Recombinant α1-antitrypsin Pittsburg (Met358→Arg) is a potent inhibitor of plasma kallikrein and activated factor XII fragment. J Clin Invest 1986; 77: 635-637
  • 50 George PM, Pemberton P, Brathurst IC, Carrell RW, Gibson HL, Rosenberg S, Hallewell RA, Barr PJ. Characterization of antithrombins produced by active site mutagenesis of human arantitrypsin expressed in yeast. Blood 1989; 73: 490-496
  • 51 Colman RW, Flores DN, De La Cadena RA, Scott CF, Cousens L, Barr PJ, Hoffman IB, Kueppers F, Fisher D, Idell S, Pisarello J. Recombinant α1-antitrypsin Pittsburgh attenuates experimental gram-negative septicemia. Am J Physiol 1988; 130: 418-426
  • 52 Hermans JM, Stone SR. Interaction of activated protein C with serpins. Biochem J 1993; 295: 239-245
  • 53 Hopkins PCR, Carrell RW, Stone SR. Effects of mutations in the hinge region of serpins. Bochemistry 1993; 32: 7650-7657
  • 54 Schapira M, Ramus M-A, Waeber B, Brunner HR, Jallat S, Carvallo D, Roitsch C, Courtney M. Protection by recombinant α1-antitrypsin Ala357 Arg358 against arterial hypotension induced by factor XII fragment. J Clin Invest 1987; 80: 582-585
  • 55 Schulze AJ, Huber R, Degryse E, Speck D, Bischoff R. Inhibitory activity and conformational transition of α1-proteinase inhibitor variants. Eur J Biochem 1991; 202: 1147-1155
  • 56 Anderson ED, Thomas L, Hayflick JS, Thomas G. Inhibition of HIV-1 gp 160-dependent membrane fusion by a furin-directed α1-antitrypsin variant. J Biol Chem 1993; 268: 24887-24891
  • 57 Matheson N, Bathurst I, Travis J. The primary role of the P1′ residue (Ser359) of alpha-1-proteinase inhibitor. Biochem Biophys Res Commun 1989; 159: 271-277
  • 58 Avron A, Reeve FH, Lickorish JM, Carrell RW. Effect of alanine insertion (P5′) on the reactive centre of α1-antitrypsin. FEBS Lett 1991; 280: 41-43
  • 59 Curiel DT, Vogelmeier C, Hubbard RC, Stier LE, Crystal RG. Molecular basis of α1-antitrypsin deficiency and emphysema associated with the α1 antitrypsin Mmineral springs allele. Mol Cell Biol 1990; 10: 47-56
  • 60 Holmes MD, Brantly ML, Crystal RG. Molecular basis of the heterogeneity among the P-family of alpha-1-antitrypsin alleles. Am Rev Respir Dis 1990; 142: 1185-1192
  • 61 Curiel DT, Chytil A, Courtney M, Crystal RG. Serum α1-antitrypsin deficiency associated with the common S-type (Glu264→Val) mutation results from intracellular degradation. J Biol Chem 1989; 264: 10477-10486
  • 62 Brodbeck RM, Samandai T, Brown JL. Effects of mutations that alter the Glu264-Lys387 salt bridge on the secretion of α1-proteinase inhibitor. J Biol Chem 1993; 268: 6771-6776
  • 63 Holmes MD, Brantly ML, Fells GA, Crystal RG. α1-Antitrypsin Wbethesda: Molecular basis of an unusual α1-antitrypsin deficiency variant. Biochem Biophys Res Commun 1990; 170: 1013-1020
  • 64 Foreman RC. Disruption of the lys-290-glu-342 salt bridge in human α1-antitrypsin does not prevent its synthesis and secretion. FEBS Lett 1987; 216: 79-82
  • 65 Brantly M, Courtney M, Crystal RG. Repair of the secretion defect in the Z form of α1-antitrypsin by addition of a second mutation. Science 1988; 242: 1700-1702
  • 66 McCracken AA, Kruse KB, Brown JL. Molecular basis for defective secretion of the Z variant of human alpha-1-proteinase inhibitor: Secretion of variants having altered potential for salt bridge formation between amino acids 290 and 342. Mol Cell Biol 1989; 9: 1406-1414
  • 67 McCracken AA, Kruse KB, Valentine J, Roberts C, Yohannes TZ, Brown JL. Construction and expression of α1-proteinase inhibitor mutants and the effect of these mutations on secretion of the variant inhibitors. J Biol Chem 1991; 266: 7578-7582
  • 68 Sifers RN, Hardick CP, Woo SLC. Disruption of the 290-342 salt bridge is not responsible for the secretory effect of the PiZ α1-antitrypsin variant. J Biol Chem 1989; 264: 2997-3001
  • 69 Brodbeck RM, Brown JL. Secretion of arproteinase inhibitor requires an almost full length molecule. J Biol Chem 1992; 267: 294-297
  • 70 Sifers RN, Brashears-Macatee S, Kidd VJ, Muensch H, Woo SLC. A frameshift mutation results in a truncated α1-antitrypsin that is retained within the rough endoplasmic reticulum. J Biol Chem 1988; 263: 7330-7335
  • 71 Le A, Steiner JL, Ferrel GA, Shaker JC, Sifers RN. Associaton between calnexin and a secretion-incompetent variant of human α1-antitrypsin. J Biol Chem 1994; 269: 7514-7519
  • 72 Lindahl U, Backstrom G, Thunberg L, Leder IG. Evidence for a 3-O-sul-fated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Acad Sci USA 1980; 77: 6551-6555
  • 73 Casu B, Oreste P, Torri G, Zoppetti G, Choay J, Lormeau J-C, Petitou M, Sinay P. The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and 13C nuclear magnetic resonance studies. Biochem J 1981; 197: 599-609
  • 74 Choay J, Petitou M, Lormeau JC, Sinay P, Casu B, Gatti G. Structure-activity relationship in heparin: A synthetic pentasaccharide with high-affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem Biophys Res Commun 1983; 116: 492-499
  • 75 Gettins PGW, Fan B, Crews BC, Turko IV, Olson ST, Streusand VJ. Transmission of conformational change from the heparin binding site to the reactive center of antithrombin. Biochemistry 1993; 32: 8385-8389
  • 76 Olson ST, Björk I, Sheffer R, Craig PA, Shore JD, Choay J. Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem 1992; 267: 12528-12538
  • 77 Bock SC, Wion KL, Vehar GA, Lawn RM. Cloning and expression of the cDNA for human antithrombin III. Nucl Acids Res 1982; 10: 8113-8125
  • 78 Bröker M, Ragg H, Karges HE. Expression of human antithrombin III in Saccharomyces cerevisiae and Saccharomyces pombe. Biochem Biophys Res Commun 1987; 908: 203-213
  • 79 Björk I, Ylinenjärvi K, Olson ST, Hermentin P, Conradt HS, Zettlmeißl G. Decreased affinity of recombinant antithrombin for heparin due to increased glycosylation. Biochem J 1992; 286: 793-800
  • 80 Fan B, Crews BC, Turko IV, Choay J, Zettlmeißl G, Gettins P. Heterogeneity of recombinant human antithrombin III expressed in baby hamster kidney cells. Effect of glycosylation differences on heparin binding and structure. J Biol Chem 1993; 268: 17588-17596
  • 81 Zettlmeißl G, Conrad HS, Nimtz M, Karges HE. Characterization of recombinant human antithrombin III synthesized in Chinese hamster ovary cells. J Biol Chem 1989; 264: 21153-21159
  • 82 Turko IV, Fan B, Gettins PGW. Carbohydrate isoforms of antithrombin variant N135Q with different heparin affinities. FEBS Lett 1993; 335: 09-12
  • 83 Stephens AW, Siddiqui A, Hirs CHW. Expression of functionally active human antithrombin III. Proc Natl Acad Sci USA 1987; 84: 3886-3890
  • 84 Zettlmeißl G, Wirth M, Hauser H, Küpper HA. Efficient expression system for human antithrombin III in baby hamster kidney cells. Behring Inst Mitt 1988; 82: 26-34
  • 85 Zettlmeißl G, Ragg H, Karges HE. Expression of biologically active human antithrombin III in Chinese hamster ovary cells. Biotechnology 1987; 5: 720-725
  • 86 Wasley LC, Atha DH, Bauer KA, Kaufman RJ. Expression and characterization of human antithrombin III synthesized in mammalian cells. J Biol Chem 1987; 262: 14766-14772
  • 87 Gillespie LS, Hillesland KK, Knauer DJ. Expression of biologically active human antithrombin III by recombinant baculovirus in Spodoptera frugi-perda cells. J Biol Chem 1991; 266: 3995-4001
  • 88 Austin RC, Rachubinski RA, Femandez-Rachubinski F, Blajchman MA. Expression in a cell-free system of normal and variant forms of human antithrombin III. Ability to bind heparin and react with α-thrombin. Blood 1990; 76: 1521-1529
  • 89 Wu JK, Sheffield WP, Blajchman MA. Molecular cloning and cell-free expression of mouse antithrombin III. Thromb Haemost 1992; 68: 291-296
  • 90 Austin RC, Rachubinski RA, Blajchman MA. Site-directed mutagenesis of alanine-382 of human antithrombin III. FEBS Lett 1991; 280: 254-258
  • 91 Theunissen HJM, Dijkema R, Grootenhuis PDJ, Swinkels JC, de Poorter TL, Carati P, Visser A. Dissociation of heparin-dependent thrombin and factor Xa inhibitory activities of antithrombin-III by mutations in the reactive site. J Biol Chem 1993; 268: 9035-9040
  • 92 Gettins P, Choay J, Crews BC, Zettlmeißl G. Role of tryptophan 49 in the heparin cofactor activity of human antithrombin III. J Biol Chem 1992; 267: 21946-21953
  • 93 Church FC, Pratt CW, Treanor RE, Whinna HC. Antithrombin action of phosvitin and other phosphate-containing polyanions is mediated by heparin cofactor II. FEBS Lett 1988; 237: 26-30
  • 94 Church FC, Treanor RE, Sherill GB, Whinna HC. Carboxylate polyanions accelerate inhibition of thrombin by heparin cofactor II. Biochem Biophys Res Commun 1987; 148: 362-368
  • 95 Blinder MA, Marasa JC, Reynolds CH, Deaven LJ, Tollefsen DM. Heparin cofactor II: cDNA sequence, chromosome localization, restriction fragment length polymorphism, and expression in Escherichia coli . Biochemistry 1988; 27: 752-759
  • 96 Ragg H, Preibisch G. Structure and expression of the gene coding for the human serpin hLS2. J Biol Chem 1988; 263: 12129-12134
  • 97 Zhang G-S, Mehringer JH, Van Deerlin VMD, Kozak CA, Tollefsen DM. Murine heparin cofactor II: Purification, cDNA sequence, expression, and gene structure. Biochemistry 1994; 33: 3632-3642
  • 98 Blinder MA, Tollefsen DM. Site-directed mutagenesis of arginine 103 and lysine 185 in the proposed glycosaminoglycan binding site of heparin cofactor II. J Biol Chem 1990; 265: 286-291
  • 99 Whinna HC, Blinder MA, Szewczyk M, Tollefsen DM, Church FC. Role of lysine 173 in heparin binding to heparin cofactor II. J Biol Chem 1991; 266: 8129-8135
  • 100 Ragg H, Ulshöfer T, Gerewitz J. On the activation of human leuserpin-2, a thrombin inhibitor, by glycosaminoglycans. J Biol Chem 1990; 265: 5211-5218
  • 101 Ragg H, Ulshöfer T, Gerewitz J. Glycosaminoglycan-mediated leuser-pin-2/thrombin interaction. Structure-function relationships. J Biol Chem 1990; 265: 22386-22391
  • 102 Blinder MA, Andersson TR, Abildgaard U, Tollefsen DM. Heparin cofactor IIOslo. Mutation of Arg-189 to His decreases the affinity for der-matan sulfate. J Biol Chem 1989; 264: 5128-5133
  • 103 Van Deerlin VMD, Tollefsen DM. The N-terminal acidic domain of heparin cofactor II mediates the inhibition of α-thrombin in the presence of glycosaminoglycan. J Biol Chem 1991; 266: 20223-20231
  • 104 Church FC, Villanueva GB, Griffith MJ. Structure-function relationships in heparin cofactor II: Chemical modification of arginine and tryptophan and demonstration of a two-domain structure. Arch Biochem Biophys 1986; 246: 175-184
  • 105 Lawrence DA, Olson ST, Palaniappan S, Ginsburg D. Engineering plasminogen activator inhibitor 1 mutants with increased functional stability. Biochemistry 1994; 33: 3643-3648
  • 106 Ehrlich HJ, Gebbink RK, Keiijer J, Pannekoek H. Elucidation of structural requirements on plasminogen activator inhibitor-1 for binding to heparin. J Biol Chem 1992; 267: 11606-11611
  • 107 Lijnen HR, Van Hoef B, Collen D. On the reversible interaction of plasminogen activator inhibitor-1 with tissue-type plasminogen activator and with urokinase-type plasminogen activator. J Biol Chem 1991; 266: 4041-4044
  • 108 Vaughan DE, Declerck PJ, De Mol M, Collen D. Recombinant plasminogen activator inhibitor-1 reverses the bleeding tendency associated with the combined administration of tissue-type plasminogen activator and aspirin in rabbits. J Clin Invest 1989; 84: 586-591
  • 109 Racanelli AL, Diemer MJ, Dobes AC, Dubin JR, Reilly TM. Comparison of recombinant plasminogen activator inhibitor-1 and epsilon amino caproic acid in a hemorrhagic rabbit model. Thromb Haemost 1992; 67: 692-696
  • 110 Reilly CF, Fujita T, Hutzelmann JE, Mayer EJ, Shebuski RJ. Plasminogen activator inhibitor-1 suppresses endogenous fibrinolysis in a canine model of pulmonary embolism. Circulation 1991; 84: 287-292
  • 111 Cooperman BS, Stavridi E, Nickbarg E, Rescorla E, Schechter NM, Rubin H. Antichymotrypsin interaction with chymotrypsin - partitioning of the complex. J Biol Chem 1993; 268: 23616-23625
  • 112 Schechter NM, Jordan LM, James AM, Cooperman BS, Wang ZM, Rubin H. Reaction of human chymase with reactive site variants of alpha-1 -antichymotrypsin - modulation of inhibitor versus substrate properties. J Biol Chem 1993; 268: 23626-23633
  • 113 Davis AE III, Aulak K, Parad RB, Stecklein HP, Eldering E, Hack CE, Kramer J, Strunk RC, Bissler J, Rosen FS. Cl inhibitor hinge region mutations produce dysfunction by different mechanisms. Nature Genetics 1992; 354: 358
  • 114 Aulak KS, Eldering E, Hack CE, Lubbers YPT, Harrison RA, Mast A, Ci-cardi M, Davis AE III. A hinge region mutation in Cl-inhibitor (Ala436→Thr) results in nonsubstrate-like behavior and in polymerization of the molecule. J Biol Chem 1993; 268: 18088-18094
  • 115 Skriver K, Wikoff WR, Patston PA, Tausk F, Schapira M, Kaplan AP, Bock SC. Substrate properties of Cl inhibitor Ma (alanine→glutamic acid). Genetic and structural evidence suggesting that the P12 region contains critical determinants of serine protease inhibitor inhibitor/substrate status. J Biol Chem 1991; 266: 9216-9221
  • 116 Derechin VM, Blinder MA, Tollefsen DM. Substitution of arginine for Leu444 in the reactive site of heparin cofactor II enhances the rate of thrombin inhibition. J Biol Chem 1990; 265: 5623-5628
  • 117 Eldering E, Huijbregts CCM, Nuijens JH, Verhoeven AJ, Hack CE. Recombinant Cl inhibitor P5/P3 variants display resistance to catalytic inactivation by stimulated neutrophils. J Clin Invest 1993; 91: 1035-1043
  • 118 Rosenfield MA, Siegfried W, Yoshimura K, Yoneyama K, Fukayama M, Stier LE, Pääkkö PK, Gilardi P, Stratford-Perricaudet LD, Perricaudet M, Jallat S, Pavirani A, Lecocq JP, Crystal RG. Adenovirus-mediated transfer of a recombinant α1-antitrypsin gene to the lung epithelium in vivo. Science 1991; 252: 431-434
  • 119 Setoguchi Y, Jaffe HA, Chu CS, Crystal RG. Intraperitoneal in vivo gene therapy to deliver α1-antitrypsin to systemic circulation. Am J Resp Cell Mol Biol 1994; 10: 369-377
  • 120 Kay MA, Baley P, Rothenberg S, Leland F, Fleming L, Ponder KP, Liu T-J, Finegold M, Darlington G, Pokomy W, Woo SLC. Expression of human a]-antitrypsin in dogs after autologous transplantation of retroviral hepatocytes. Proc Natl Acad Sci USA 1992; 89: 89-93
  • 121 Ponder KP, Gupta S, Leland F, Darlington G, Finegold M, De Mayo ED, Chowdhury JR, Woo SLC. pMouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc Natl Acad Sci USA 1991; 88: 1217-1221
  • 122 Canonico AE, Conary JT, Meyrick BO, Brigham KL. Aerosol and intravenous transfection of human ar-antitrypsin gene to lungs of rabbits. Am J Resp Cell Mol Biol 1994; 10: 24-29
  • 123 Saito A, Sinohara H. Rabbit plasma α1-antiproteinase S-1: Cloning, sequencing, expression, and proteinase inhibitory properties of recombinant protein. J Biochem 1993; 113: 456-461
  • 124 Hood DB, Huntington JA, Gettins PGW. α1-Proteinase inhibitor variant T345R. Influence of P14 residue on substrate and inhibitory pathways. Biochemistry 1994 in press
  • 125 Kwon K-S, Kim J, Shin H-S, Yu M-H. Single amino acid substitutions of α1-antitrypsin that confer enhancement in thermal stability. J Biol Chem 1994; 269: 9627-9631
  • 126 Austin RC, Sheffield WP, Rachubinski RA, Blajchman MA. The N-terminal domain of antithrombin III is essential for heparin binding and complex formation with, but not cleavage by, α-thrombin. Biochem J 1992; 282: 345-351
  • 127 Eldering E, Nuijens JH, Hack CE. Expression of functional human Cl inhibitor in COS cells. J Biol Chem 1988; 263: 11776-11779
  • 128 Eldering E, Huijbregts CCM, Lubbers YTP, Longstaff C, Hack CE. Characterization of recombinant Cl inhibitor PI variants. J Biol Chem 1992; 267: 7013-7020
  • 129 Franke AE, Danley DE, Kaczmarek FS, Hawrylik SJ, Gerard RD, Lee SE, Geoghegan KF. Expression of human plasminogen activator inhibitor type-1 (PAI-1) in Escherichia coli as a soluble protein comprised of active and latent forms. Isolation and crystallization of latent PAI-1. Biochim Biophys Acta 1990; 1037: 16-23
  • 130 Seetharam R, Dwivedi AM, Duke JL, Hayman AC, Walton HL, Huckins NR, Kamerkar SM, Corman JI, Woodeshick RW, Wilk RR, Reilly TM. Purification and characterization of active and latent forms of recombinant plasminogen activator inhibitor 1 produced in Escherichia coli . Biochemistry 1992; 31: 9877-9882
  • 131 Reilly TM, Seetharam R, Duke JL, Davis GL, Pierce SK, Walton HL, Kingsley D, Sisk WP. Purification and characterization of recombinant plasminogen activator inhibitor 1 from Escherichia coli . J Biol Chem 1990; 265: 9570-9574
  • 132 Lawrence D, Strandberg L, Grundström T, Ny T. Purification of active human plasminogen activator inhibitor 1 from Escherichia coli. Comparison with natural and recombinant forms purified from eucaryotic cells. Eur J Biochem 1989; 186: 523-533
  • 133 Sisk WP, Davis GL, Kingsley D, Chiu AT, Reilly TM. High-level synthesis of biologically active human plasminogen activator inhibitor type 1 (PAI-1) in Escherichia coli . Gene 1990; 96: 305-309
  • 134 Vaughan DE, Declerck PJ, Reilly TM, Park K, Collen D, Fasman GD. Dynamic structural and functional relationships in recombinant plasminogen activator inhibitor-1 (rPAI-1). Biochim Biophys Acta 1993; 1202: 221-229
  • 135 Dwivedi AM, Woodeshick RW, Walton HL, Reilly TM. A spectroscopic study of the conformations of active and latent forms of recombinant plasminogen activator inhibitor-1. Biochem Biophys Res Commun 1991; 175: 437-443
  • 136 De Serrano V, Castellino FJ. Structural determinants of the noncatalytic chain of tissue-type plasminogen activator that modulate its association rate with plasminogen activator inhibitor-1. J Biol Chem 1990; 265: 10473-10478
  • 137 Madison EL, Goldsmith EJ, Gerard RD, Gething M-J, Sambrook JF, Bassal-Duby RS. Amino acid residues that affect interaction of tissue-type plasminogen activator with plasminogen activator inhibitor 1. Proc Natl Acad Sci USA 1990; 87: 3530-3533
  • 138 Wun T-C, Kretzmer KK. cDNA cloning and expression in E. coli of a plasminogen activator inhibitor (PAI) related to a PAI produced by Hep G2 hepatoma cell. FEBS Lett 1987; 210: 11-16
  • 139 Reilly TM, Forsythe MS, Racanelli AL, Spitz SM, Walton HL, Mousa SA. Recombinant plasminogen activator inhibitor-1 protects platelets against the inhibitory effects of plasmin. Thromb Res 1993; 71: 61-68
  • 140 Knabb RM, Chiu AT, Reilly TM. Effect of recombinant plasminogen activator inhibitor type 1 on fibrinolysis in vitro and in vivo. Thromb Res 1990; 59: 309-317
  • 141 Krishnamurti CR. PAI-1 promoted fibrin deposition in rabbits infused with ancrod but not thrombin. Blood 1993; 82: 3631-3636
  • 142 Urano T, Strandberg L, Johansson LB-Ä, Ny T. A substrate-like form of plasminogen activator inhibitor type 1. Conversions between different forms by sodium dodecyl sulphate. Eur J Biochem 1992; 209: 985-992
  • 143 Gardell SJ, Hare TR, Han JH, Markus HZ, Keech BJ, Carty CE, Ellis RW, Schultz LD. Purification and characterization of human plasminogen activator inhibitor type 1 expressed in Saccharomyces cerevisiae. Arch Biochem Biophys 1990; 278: 467-474
  • 144 Mayer EJ, Fujita T, Gardell SJ, Shebuski RJ, Reilly CF. The pharmacokinetics of plasminogen activator inhibitor-1 in the rabbit. Blood 1990; 76: 1514-1520
  • 145 Alessi MC, Declerck PJ, De Mol M, Nelles L, Collen D. Purification and characterization of natural and recombinant human plasminogen activator inhibitor 1 (PAI 1). Eur J Biochem 1988; 175: 531-540
  • 146 Vaughan DE, Declerck PJ, Van Houtte E, De Mol M, Collen D. Studies of recombinant plasminogen activator inhibitor-1 in rabbits. Pharmacokinetics and evidence for reactivation of latent plasminogen activator inhibitor-1 in vivo. Circulation Research 1990; 67: 1281-1285
  • 147 Declerck PJ, De Mol M, Vaughan DE, Collen D. Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a non-inhibitory substrate for tissue-type plasminogen activator. J Biol Chem 1992; 267: 11693-11696
  • 148 Madison EL, Goldsmith EJ, Gerard RD, Gething M-J, Sambrook JF. Serpin-resistant mutants of human tissue-type plasminogen activator. Nature 1989; 339: 721-724
  • 149 Gombau L, Schleef RR. Processing of type 1 plasminogen activator inhibitor (PAI-1) into the regulated secretory pathway. J Biol Chem 1994; 269: 3875-3880
  • 150 Ehrlich HJ, Gebbink RK, Keijer J, Linders M, Preissner KT, Pannekoek H. Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties. J Biol Chem 1990; 265: 13029-13035
  • 151 Keijer J, Linders M, Wegman JJ, Ehrlich HJ, Mertens K, Pannekoek H. On the target specificity of plasminogen activator inhibitor 1: Role of heparin, vitronectin, and the reactive site. Blood 1991; 78: 1254-1261
  • 152 Lawrence DA, Strandberg L, Ericson J, Ny T. Structure-function studies of the SERPIN plasminogen activator inhibitor type 1. Analysis of chimeric strained loop mutants. J Biol Chem 1990; 265: 20293-20301
  • 153 Keijer J, Ehrlich HJ, Linders M, Preissner KT, Pannekoek H. Vitronectin governs the interaction between plasminogen activator inhibitor-1 and tissue-type plasminogen activator. J Biol Chem 1991; 266: 10700-10707
  • 154 Madison EL, Goldsmith EJ, Gething M-J, Sambrook JF, Gerard RD. Restoration of serine protease-inhibitor interaction by protein engineering. J Biol Chem 1990; 265: 21423-21426
  • 155 Sherman PM, Lawrence DA, Yang AY, Vandenberg ET, Paielli D, Olson ST, Shore JD, Ginsburg D. Saturation mutagenesis of the plasminogen activator inhibitor-1 reactive center. J Biol Chem 1992; 267: 7588-7595
  • 156 Strandberg L, Lawrence DA, Johansson LB-A, Ny T. The oxidative inactivation of plasminogen activator inhibitor type 1 results from a conformational change in the molecule and does not require the involvement of the PL methionine. J Biol Chem 1991; 266: 13852-13858
  • 157 Rubin H, Wang ZM, Nickbarg EB, McLarney S, Naidoo N, Schoenberger OL, Johnson JL, Cooperman BS. Cloning, expression, purification, and biological activity of recombinant native and variant human α1-antichymotrypsin. J Biol Chem 1990; 265: 1199-1207
  • 158 Kilpatrick L, Johnson JL, Nickbarg EB, Wang Z-M, Clifford TF, Banach M, Cooperman BS, Douglas SD, Rubin H. Inhibition of human neutrophil superoxide generation by arantichymotrypsin. J Immunol 1991; 146: 2388-2393
  • 159 Schuster MG, Enriquez PM, Curran P, Cooperman BS, Rubin H. Regulation of neutrophil superoxide by antichymotrypsin-chymotrypsin complexes. J Biol Chem 1992; 267: 5056-5059
  • 160 Kilpatrick L, McCawley L, Nachiappan V, Greer W, Majumdar S, Korchak HM. Douglas SD. α1-Antichymotrypsin inhibits the NADPH oxidase-enzyme complex in phorbol ester-stimulated neutrophil membranes. J Immunol 1992; 149: 3059-3065
  • 161 Narumi H, Hishida T, Sasaki T, Feng DF, Doolittle RF. Molecular cloning of silkworm (Bombyx-Mori) antichymotrypsin - a new member of the serpin superfamily of proteins from insects. Eur J Biochem 1993; 214: 181-187
  • 162 Sumi Y, Ichikawa Y, Nakamura Y, Miura O, Aoki N. Expression and characterization of pro α2-plasmin inhibitor. J Biochem 1989; 106: 703-707
  • 163 Holmes WE, Lijnen HR, Collen D. Characterization of recombinant human arantiplasmin and of mutants obtained by site-directed mutagenesis of the reactive site. Biochemistry 1987; 26: 5133-5140
  • 164 Miura O, Sugahara Y, Aoki N. Hereditary α2-plasmin inhibitor deficiency caused by a transport-deficient mutation (α2-PI-Okinawa). Deletion of Glu137 by a trinucleotide deletion blocks intracellular transport. J Biol Chem 1989; 264: 18213-18219
  • 165 Takahashi S, Fukamizu A, Hasegawa T, Yokoyama M, Nomura T, Katsuki M, Murakami K. Expression of the human angiotensinogen gene in transgenic mice and transfected cells. Biochem Biophys Res Commun 1991; 180: 1103-1109
  • 166 Hatae T, Takimoto E, Kukamizu A, Hori H, Kimoto K, Murakami K. Expression and purification of human angiotensinogen in Chinese hamster ovary cells. Biochim Biophys Acta 1992; 1121: 335-338
  • 167 Fukamizu A, Sugimura K, Takimoto E, Sugiyama F, Seo M-S, Takahashi S, Hatae T, Kajiwara N, Yagami K-I, Murakami K. Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and angiotensinogen genes. J Biol Chem 1993; 268: 11617-11621
  • 168 Ghose-Dastidar J, Ross JBA, Green R. Expression of biologically active human corticosteroid binding globulin by insect cells: Acquisition of function requires glycosylation and transport. Proc Natl Acad Sci USA 1991; 88: 6408-6412
  • 169 Avvakumov GV, Warmels-Rodenhiser S, Hammond GL. Glycosylation of human corticosteroid-binding globulin at asparagine 238 is necessary for steroid binding. J Biol Chem 1993; 268: 862-866
  • 170 Sommer J, Meyhack B, Rovelli G, Buergi R, Monard D. Synthesis of glia-derived nexin in yeast. Gene 1989; 85: 453-459
  • 171 Coughlin P, Sun JR, Cerruti L, Salem HH, Bird P. Cloning and molecular characterization of a human intracellular serine proteinase inhibitor. Proc Natl Acad Sci USA 1993; 90: 9417-9421
  • 172 Steven J, Cottingham IR, Berry SJ, Chinery SA, Goodey AR, Courtney M, Ballance DJ. Production and characterization of plasminogen activator inhibitor 2 produced in Saccharomyces cerevisiae. Eur J Biochem 1991; 196: 431-438
  • 173 Jensen PH, Lorand L, Ebbesen P, Gliemann J. Type-2 plasminogen-activator inhibitor is a substrate for trophoblast transglutaminase and Factor-XIII(a) - transglutaminase-catalyzed cross-linking to cellular and extracellular structures. Eur J Biochem 1993; 214: 141-146
  • 174 von Heijne G, Liljestrom P, Mikus P, Andersson H, Ny T. The efficiency of the uncleaved secretion signal in the plasminogen activator inhibitor type-2 protein can be enhanced by point mutations that increase its hydro-phobicity. J Biol Chem 1991; 266: 15240-15243
  • 175 Mikus P, Urano T, Liljestrom P, Ny T. Plasminogen-activator inhibitor type 2 (PAI-2) is a spontaneously polymerizing SERPIN. Biochemical characterization of the recombinant intracellular and extracellular forms. Eur J Biochem 1993; 218: 1071-1082
  • 176 Schwartz BS. Differential inhibition of soluble and cell surface receptor-bound single-chain urokinase by plasminogen activator. J Biol Chem 1994; 269: 8319-8323
  • 177 Evans DL, McGrogan M, Scott RA, Carrell RW. Protease specificity and heparin binding and activation of recombinant protease nexin I. J Biol Chem 1991; 266: 22307-22312
  • 178 Suzuki K, Deyashiki Y, Nishioka J, Toma K. Protein C inhibitor: Structure and function. Thromb Haemost 1989; 62: 337-342
  • 179 Kordula T, Dubin A, Schooltink H, Koj A, Heinrich PC, Rosejohn S. Molecular cloning and expression of an intracellular serpin - an elastase inhibitor from horse leucocytes. Biochem J 1993; 293: 187-193
  • 180 Chai KX, Chen LM, Chao J, Chao L. Kallistatin - a novel human serine proteinase inhibitor - molecular cloning, tissue distribution, and expression in Escherichia coli . J Biol Chem 1993; 268: 24498-24505
  • 181 Malathy PV, Imakawa K, Simmen RCM, Roberts RM. Molecular cloning of the uteroferrin-associated protein, a major progesterone-induced serpin secreted by the porcine uterus, and the expression of its mRNA during pregnancy. Methods Enzymol 1990; 4: 428-440
  • 182 Becerra SP, Palmer I, Kumar A, Steele F, Shiloach J, Notario V, Chader GJ. Overexpression of fetal human epithelium-derived factor in Escherichia coli A functionally active neurotrophic factor. J Biol Chem 1993; 268: 23148-23156
  • 183 Suminami Y, Kishi F, Sekiguchi K, Kato H. Squamous cell carcinoma antigen is a new member of the serine protease inhibitors. Biochem Biophys Res Commun 1991; 181: 51-58
  • 184 Zou Z, Anisowicz A, Hendrix MJC, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 1994; 263: 526-529
  • 185 Miura M, Zhu H, Rotello R, Hartweig EA, Yuan J. Induction of apoptosis in fibroblasts by IL-13-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 1993; 75: 653-660
  • 186 Macen JL, Upton C, Nation N, McFadden G. SERP1, a serine proteinase inhibitor encoded by myxoma virus is a secreted glycoprotein that interferes with inflammation. Virology 1993; 195: 348-363
  • 187 Kambe F, Seo H, Mori Y, Murata Y, Janssen OE, Refetoff S, Matsui N. An additional carbohydrate chain in the variant thyroxine binding globulin-Gary (TBGAsn-96) impairs its secretion. Mol Endocrinol 1992; 6: 443-449
  • 188 Janssen OE, Refetoff S. In vitro expression of thyroxine-binding globulin (TBG) variants. Impaired secretion of TBGPro-227 but not TBGPro-113 . J Biol Chem 1992; 267: 13998-14004
  • 189 Hayashi Y, Moru Y, Janssen OE, Sunthornthepvarakul T, Weiss RE, Takeda K, Weinberg M, Seo H, Bell GI, Refetoff S. Human thyroxine-binding globulin gene: Complete sequence and transcriptional regulation. Mol Endocrinol 1993; 7: 1049-1060