Synlett 2011(3): 331-334  
DOI: 10.1055/s-0030-1259294
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Synthesis of (E)-α-Fluorovinylphosphonates from α,α-Difluorophosphonates

Prabhakar Cherkupally, Anton Slazhnev, Petr Beier*
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2,166 10 Prague 6, Czech Republic
Fax: +420(220)183578; e-Mail: beier@uochb.cas.cz;
Further Information

Publication History

Received 21 October 2010
Publication Date:
04 January 2011 (online)

Abstract

α,α-Difluorophosphonates, which are readily available from alkyl halides and diethyl difluoromethylphosphonate, undergo elimination of hydrogen fluoride using alkali metal alkoxides to provide α-fluorovinylphosphonates in high yields and E/Z selectivities.

    References and Notes

  • 1 Romanenko VD. Kukhar VP. Chem. Rev.  2006,  106:  3868 
  • 2a Blackburn GM. Chem. Ind. (London)  1981,  134 
  • 2b McKenna CE. Shen PD. J. Org. Chem.  1981,  46:  4573 
  • 3a Berkowitz DB. Bose M. Pfannenstiel TJ. Doukov T. J. Org. Chem.  2000,  65:  4498 
  • 3b Berkowitz DB. Bose M. Asher NG. Org. Lett.  2001,  3:  2009 
  • 3c Berkowitz DB. Bose M. J. Fluorine Chem.  2001,  112:  13 
  • 4a Blackburn GM. Parratt MJ. J. Chem. Soc., Chem. Commun.  1982,  1270 
  • 4b Blackburn GM. Parratt MJ.
    J. Chem. Soc., Perkin Trans. 1  1986,  1417 
  • 5 Kohno Y, Tanaka K, Kuriama K, and Hori W. inventors;  EP1602660A1. 
  • 6a Knunyants IL. Pervova EYa. Tyuleneva VV. Dokl. Akad. Nauk SSSR  1959,  129:  576 
  • 6b Knunyants IL. Pervova EYa. Izv. Akad. Nauk SSSR, Ser. Khim.  1962,  1409 
  • 6c Dittrich R. Hägele G. Phosphorus Sulfur Relat. Elem.  1981,  10:  127 
  • 6d Shi G. Cao Z. J. Chem. Soc., Chem. Commun.  1995,  1969 
  • 6e Wessolowski H. Gard GL. Röschenthaler G.-V. J. Fluorine Chem.  1996,  80:  149 
  • 6f Huang X. He P. Shi G. J. Org. Chem.  2000,  65:  627 
  • 6g Martynov BI. Semchenko FM. Phosphorus, Sulfur Silicon Relat. Elem.  2002,  177:  2123 
  • 7 Inukai K. Ueda T. Muramatsu H. Bull. Chem. Soc. Jpn.  1967,  40:  1288 
  • 8 Boyce CBC. Webb SB. J. Chem. Soc., Perkin Trans. 1  1974,  1644 
  • 9 Zapata AJ. Gu Y. Hammond GB. J. Org. Chem.  2000,  65:  227 
  • 10a Gross RS. Mehdi S. McCarthy JR. Tetrahedron Lett.  1993,  34:  7197 
  • 10b Zhang H. Xu Y. Zhang Z. Liman ER. Prestwich GD. J. Am. Chem. Soc.  2006,  128:  5642 
  • 11 Zhang X. Burton DJ. J. Fluorine Chem.  2001,  112:  47 
  • 12a Blackburn GM. Parratt MJ. J. Chem. Soc., Chem. Commun.  1983,  886 
  • 12b Waschbüsch R. Carran J. Savignac P. Tetrahedron  1996,  52:  14199 
  • 12c Keeney A. Nieschalk J. O’Hagan D. J. Fluorine Chem.  1996,  80:  59 
  • 12d Schmitt L. Cavusoglu N. Spiess B. Schlewer G. Tetrahedron Lett.  1998,  39:  4009 
  • 12e Shen Y. Zhang Y.
    J. Fluorine Chem.  2001,  108:  69 
  • 13a Iorga B. Eymery F. Savignac P. Tetrahedron Lett.  1998,  39:  4477 
  • 13b Martynov BI. Sokolov VB. Askinenko AYu. Goreva TV. Epishina TA. Pushin AN. Russ. Chem. Bull.  1998,  47:  1983 
  • 13c Xu Y. Qian L. Prestwich GD. Org. Lett.  2003,  5:  2267 
  • 13d Foss FW. Snyder AH. Davis MD. Rouse M. Okusa MD. Lynch KR. Macdonald TL. Bioorg. Med. Chem.  2007,  15:  663 
  • 13e Cui P. McCalmont F. Tomsig JL. Lynch KR. Macdonald TL. Bioorg. Med. Chem.  2008,  16:  2212 
  • 14a Beier P. Alexandrova AV. Zibinsky M. Prakash GKS. Tetrahedron  2008,  64:  10977 
  • 14b Alexandrova AV. Beier P. J. Fluorine Chem.  2009,  130:  493 
  • 15 Beier P. Pohl R. Alexandrova AV. Synthesis  2009,  957 
  • 16 Chunikhin KS. Kadyrov AA. Pasternak PV. Chkanikov ND. Russ. Chem. Rev.  2010,  79:  371 
17

Synthesis of ( E )-1a; Typical Procedure. Trifluoroethanol (0.16 mL, 2.25 mmol, 5 equiv) was added to a mixture of sodium metal (29 mg, 1.26 mmol, 2.8 equiv) in anhydrous THF (2 mL). The mixture was stirred under argon until all sodium reacted. Solvent and excess alcohol were removed under reduced pressure and anhydrous DMF (1.5 mL) was added, followed by the addition of 2a (125 mg, 0.45 mmol, 1 equiv). After stirring for 2 h at r.t., saturated aqueous NH4Cl (10 mL) was added, the product was extracted into Et2O (3 × 15 mL) and the combined organic phase was washed with brine (10 mL), dried over anhydrous MgSO4, and solvent was removed under reduced pressure. Purification of the crude product by silica gel flash chromatography (EtOAc-hexanes, 2:3), afforded pure (E)-1a (115 mg, 98%) as a colorless oil.¹³a R f = 0.47 (EtOAc-hexanes, 2:3); IR (film): 3092, 3058, 3029, 2985, 2933, 2910, 1577, 1495, 1450, 1393, 1265, 1165, 1022, 757, 694 cm; ¹H NMR (400 MHz, CDCl3): δ = 1.39 (dt, J = 7.1, 0.4 Hz, 6 H, 2 × CH3), 4.16-4.27 (m, 4H, 2 × CH2), 6.75 (dd, J = 42.3, 8.6 Hz, 1 H, CH), 7.33-7.43 (m, 3 H, CArH), 7.61-7.63 (m, 2 H, CArH); ¹³C NMR (100 MHz, CDCl3): δ = 16.3 (d, J = 6.2 Hz, CH3), 63.2 (d, J = 5.4 Hz, CH2), 123.1 (d, J = 29.9 Hz, CH), 128.7 (CArH), 129.5 (d, J = 2.5 Hz, CArH), 130.0 (d, J = 7.7 Hz, CArH), 131.1-131.3 (m, CAr), 150.0 (dd, J = 286.1, 236.1 Hz, CF); ¹9F NMR (376 MHz, CDCl3): δ = -127.1 (dd, J = 97.8, 42.3 Hz); ³¹P NMR (162 MHz, CDCl3): δ = 5.94 (d, J = 97.8 Hz); MS (EI): m/z (%) = 258 (95) [M]+, 195 (17), 185 (70), 167 (18), 149 (89), 129 (64), 118 (61), 102 (100), 93 (30), 65 (45); HRMS (ESI+): m/z
[M + H]+ calcd for C12H17FO3P: 259.08939; found: 259.08926.