Synlett 2024; 35(04): 437-440
DOI: 10.1055/a-2112-9605
cluster
11th Singapore International Chemistry Conference (SICC-11)

Synthesis and Coordination Behavior of 9,10-Diarsatriptycene

Ryoto Inaba
a   Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
,
Takashi Kikuchi
b   Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
,
Hiroaki Imoto
a   Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
c   FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
,
Kensuke Naka
a   Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
d   Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science KAKENHI [20H02812 (Grant-in-Aid for Scientific Research (B) to HI) and 22H02131 (Grant-in-Aid for Scientific Research (B) to KN)].


Abstract

Herein, 9,10-diheterotriptycenes (DHTs) containing heavy pnictogens (Pn, Pn = As, Sb, and Bi) are synthesized without using the dangerous chemicals used in conventional synthetic methods: tert-butyllithium, organomercury reagents, or trichloroarsine. In particular, 9,10-diarsatriptycene is obtained in relatively high yield and is stable under oxidation and coordination reactions. Additionally, the gold chloride complex 9,10-diarsatriptycene forms a one-dimensional supramolecular polymer constructed through coordination and aurophilic interactions.

Supporting Information



Publication History

Received: 22 May 2023

Accepted after revision: 19 June 2023

Accepted Manuscript online:
19 June 2023

Article published online:
10 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For reviews, see:
    • 1a Liwei Z, Zhong L, Thomas W. Chem. Lett. 2010; 39: 658
    • 1b Jiang Y, Chen C.-F. Eur. J. Org. Chem. 2011; 6377
    • 1c Woźny M, Mames A, Ratajczyk T. Molecules 2022; 27: 250
  • 2 Bartlett PD, Ryan MJ, Cohen SG. J. Am. Chem. Soc. 1942; 64: 2649

    • For reviews, see:
    • 3a Swager TM. Acc. Chem. Res. 2008; 41: 1181
    • 3b Chong HJ, MacLachlan MJ. Chem. Soc. Rev. 2009; 38: 3301
    • 3c Chen C.-F. Chem. Commun. 2011; 47: 1674
    • 3d Preda G, Nitti A, Pasini D. ChemistryOpen 2020; 9: 719
    • 3e Gu M.-J, Wang Y.-F, Han Y, Chen C.-F. Org. Biomol. Chem. 2021; 19: 10047

      For reviews, see:
    • 4a Liepuoniute I, Jellen MJ, Garcia-Garibay MA. Chem. Sci. 2020; 11: 12994
    • 4b Gisbert Y, Abid S, Kammerer C, Rapenne G. Chem. Eur. J. 2021; 27: 12019

      For reviews, see:
    • 5a Ueberricke MS. L, Mastalerz M. Chem. Rec. 2021; 21: 558
    • 5b Mistry J.-R, Montanaro S, Wright IA. Mater. Adv. 2023; 4: 787
  • 6 Chen CF, Ma Y.-X. In Iptycenes Chemistry . Chen CF, Ma Y.-X. Springer; Heidelberg: 2013: 129-171
  • 7 Reinecke MG, Ballard HH. Tetrahedron Lett. 1979; 20: 4981
  • 8 Chardon A, Osi A, Mahaut D, Doan T.-H, Tumanov N, Wouters J, Fusaro L, Champagne B, Berionni G. Angew. Chem. Int. Ed. 2020; 59: 12402

    • For recent papers, see:
    • 9a Gildenast H, Hempelmann G, Gruszien L, Englert U. Inorg. Chem. 2023; 62: 3178
    • 9b Gildenast H, Gruszien L, Friedt F, Englert U. Dalton Trans. 2022; 51: 7828
    • 9c Cao Y, Napoline JW, Bacsa J, Pollet P, Soper JD, Sadighi JP. Organometallics 2019; 38: 1868
    • 9d Konishi S, Iwai T, Sawamura M. Organometallics 2018; 37: 1876
    • 9e Drover MW, Nagata K, Peters JC. Chem. Commun. 2018; 54: 7916
    • 9f Ube H, Yasuda Y, Sato H, Shionoya M. Nat. Commun. 2017; 8: 14296

      For recent papers, see:
    • 10a Osi A, Tumanov N, Wouters J, Chardon A, Berionni G. Synthesis 2023; 55: 347
    • 10b Mahaut D, Champagne B, Berionni G. ChemCatChem 2022; 14: e202200294
    • 10c Osi A, Mahaut D, Tumanov N, Fusaro L, Wouters J, Champagne B, Chardon A, Berionni G. Angew. Chem. Int. Ed. 2022; 61: e202112342
    • 10d Hu L, Mahaut D, Tumanov N, Wouters J, Robiette R, Berionni G. J. Org. Chem. 2019; 84: 11268
    • 10e Saida AB, Chardon A, Osi A, Tumanov N, Wouters J, Adjieufack AI, Champagne B, Berionni G. Angew. Chem. Int. Ed. 2019; 58: 16889
  • 11 Uchiyama Y, Kuniya S, Watanabe R, Ohtsuki T. Heteroat. Chem. 2018; 29: e21473
    • 12a Al-Jabar NA. A, Massey AG. J. Organomet. Chem. 1985; 287: 57
    • 12b Humphries RE, Al-Jabar NA. A, Bowen D, Massey AG, Deacon GB. J. Organomet. Chem. 1987; 319: 59
    • 12c Rot N, Wijs W.-JA, Kanter FJ. J, Dam MA, Bickelhaupt F, Lutz M, Spek AL. Main Group Met. Chem. 1999; 22: 519
    • 13a Uchiyama Y, Yamamoto G. Chem. Lett. 2005; 34: 966
    • 13b Uchiyama Y, Sugimoto J, Shibata M, Yamamoto G, Mazaki Y. Bull. Chem. Soc. Jpn. 2009; 82: 819
  • 14 Sax NI. In Dangerous Properties of Industrial Materials, 3rd ed. Sax NI. Reinhold Book Corporation; New York: 1968: 437-438

    • For reviews, see:
    • 15a Imoto H. Polym. J. 2018; 50: 837
    • 15b Imoto H, Naka K. Chem. Eur. J. 2019; 25: 1883
    • 15c Imoto H, Naka K. Polymer 2022; 241: 124464
  • 16 Tanaka S, Konishi M, Imoto H, Nakamura Y, Ishida M, Furuta H, Naka K. Inorg. Chem. 2020; 59: 9587
  • 17 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01. Gaussian, Inc; Wallingford: 2016
  • 18 General Procedure of DHTs To a THF dispersion of Mg, which was activated by I2 beads, was slowly added a THF solution of PnX3 (Pn = As, Sb, Bi, X = Cl or Br) and 1,2-dibromobenzene at 25 °C, and the reaction mixture was stirred overnight at 25 °C. NH4Cl aq. was poured into the reaction mixture, and the organic layer was separated. The aqueous layer was extracted with CH2Cl2, and the combined organic layer was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (eluent: hexane). The solvents were removed in vacuo to afford the corresponding products as colorless solids.
    • 19a Sharutin VV, Pakusina AP, Smirnova SA, Sharutina OK, Platonova TP, Pushilin MA, Gerasimenko AV. Russ. J. Coord. Chem. 2004; 30: 336
    • 19b Yakubenko AA, Puzyk AM, Korostelev VO, Mulloyarova VV, Tupikina EY, Tolstoy PM, Antonov AS. Phys. Chem. Chem. Phys. 2022; 24: 7882
  • 20 The crystal structure of 1 was also reported in ref. 12c.
    • 21a Schmidbaur H, Schier A. Chem. Soc. Rev. 2008; 37: 1931
    • 21b Schmidbaur H, Schier A. Chem. Soc. Rev. 2012; 41: 370
    • 21c Langdon-Jones EE, Pope SJ. A. Chem. Commun. 2014; 50: 10343