Pharmacopsychiatry 2008; 41: S99-S104
DOI: 10.1055/s-2008-1080903
Review

© Georg Thieme Verlag KG Stuttgart · New York

Modelling of DARPP-32 Regulation to Understand Intracellular Signaling in Psychiatric Disease

M. Lindskog 1
  • 1Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
Further Information

Publication History

Publication Date:
28 August 2008 (online)

Abstract

The majority of psychopharmaca acts by binding to G-protein coupled receptors and thereby asserts it's action through the regulation of intracellular signaling networks. The convergence and interactions of pathways within these networks make the detailed signaling hard to study experimentally, and the response to a stimuli can be non-intuitive. To approach these problems with systems biology and merging biochemical data in a computer model to do virtual experiments with high time-resolution can shed new light on the functioning of these networks. The phosphoprotein DARPP-32 is regulated by several modulatory neurotransmitters, including dopamine, serotonin and adenosin, and it's function has been proposed to be altered in schizophrenia. Moreover, the well studied regulation of DARPP-32, and the vast amount of biochemical data makes it a model molecule when it comes to intracellular signaling. To better understand the interactions of the pathways that regulate DARPP-32 activation we constructed a computer model based on experimental data. In this work we discovered unexpected responses of DARPP-32 at fast timescales. An equally important outcome of the work was to identify areas where additional work is needed in order to understand intracellular signaling at the systems level, showing the need for close collaborations between theoretical and experimental biologists.

References

  • 1 Adams AC, Keefe KA. Examination of the involvement of protein kinase A in D2 dopamine receptor antagonist-induced immediate early gene expression.  Journal of Neurochemistry. 2001;  77 ((1)) 326-335
  • 2 Agid Y, Buzsaki G, Diamond DM. et al . How can drug discovery for psychiatric disorders be improved?.  Nat Rev Drug Discov. 2007;  6 ((3)) 189-201
  • 3 Ahn J-H, MacAvoy T, Rakhilin SV, Nishi A, Greengard P, Nairn AC. Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56{delta} subunit.  Proceedings of the National Academy of Sciences. 2007;  104 ((8)) 2979-2984
  • 4 Ahn J-H, Sung JY, MacAvoy T. et al . The B”/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A.  Proceedings of the National Academy of Sciences. 2007;  104 ((23)) 9876-9881
  • 5 Akira Y, Nagahide T, Shinichi S. et al . Genetic analysis of the gene coding for DARPP-32 (PPP1R1B) in Japanese patients with schizophrenia or bipolar disorder.  Schizophrenia research. 2007; 
  • 6 Albert KA, Hemmings Jr HC, Adamo AIB. et al . Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia.  Arch Gen Psychiatry. 2002;  59 ((8)) 705-712
  • 7 Baracskay KL, Haroutunian V, Meador-Woodruff JH. Dopamine receptor signaling molecules are altered in elderly schizophrenic cortex.  Synapse. 2006;  60 ((4)) 271-279
  • 8 Barbano PE, Spivak M, Flajolet M, Nairn AC, Greengard P, Greengard L. A mathematical tool for exploring the dynamics of biological networks.  Proceedings of the National Academy of Sciences. 2007;  104 ((49)) 19169-19174
  • 9 Beaulieu J-M, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/[beta]-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior.  Cell. 2005;  122 ((2)) 261-273
  • 10 Bhalla US. Signaling in small subcellular volumes. I. stochastic and diffusion effects on individual pathways.  Biophys J. 2004;  87 ((2)) 733-744
  • 11 Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways.  Science. 1999;  283 ((5400)) 381-387
  • 12 Bhalla US, Ram PT, Iyengar R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network.  Science. 2002;  297 ((5583)) 1018-1023
  • 13 Bibb JA, Snyder GL, Nishi A. et al . Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons.  Nature. 1999;  402 ((6762)) 669-671
  • 14 Blackwell KT. Modeling calcium concentration and biochemical reactions.  Brains, Minds and Media. 2005;  1 http://www.brains-minds-media.org/archive/224/
  • 15 Carlsson A. The Neurochemical circuitry of schizophrenia.  Pharmacopsychiatry. 2006; 39 (Suppl. 1);  S10-S14
  • 16 Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML. Interacttions between monoamines, glutamate, and GABA in schizophrenia: New Evidence.  Annu Rev Pharmacol Toxicol. 2001;  41 ((1)) 237-260
  • 17 Castren E. Is mood chemistry?.  Nat Rev Neurosci. 2005;  6 ((3)) 241-246
  • 18 Changeux J-P, Dehaene S. Hierarchical neuronal modeling of cognitive functions: from synaptic transmission to the Tower of London.  Int J Psychophysiol. 2000;  35 ((2–3)) 179-187
  • 19 D'Alcantara P, Schiffmann SN, Swillens S. Bidirectional synaptic plasticity as a consequence of interdependent Ca2+-controlled phosphorylation and dephosphorylation pathways.  Eur J Neurosci. 2003;  17 ((12)) 2521-2528
  • 20 Desdouits F, Siciliano JC, Greengard P, Girault JA. Dopamine- and cAMP-regulated phosphoprotein DARPP-32: phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin.  Proc Natl Acad Sci USA. 1995;  92 ((7)) 2682-2685
  • 21 Durstewitz D. A few important points about dopamine's role in neural network dynamics.  Pharmacopsychiatry. 2006;  S72-S75
  • 22 Fernandez R, Schiappa R, Girault J-A, LeNovere N. DARPP-32 is a robust integrator of dopamine and glutamate signals.  PLoS Comput Biol. 2006;  2 ((12)) e176
  • 23 Fienberg AA, Hiroi N, Mermelstein PG. et al . DARPP-32: regulator of the efficacy of dopaminergic neurotransmission.  Science. 1998;  281 ((5378)) 838-842
  • 24 Flores-Hernandez J, Hernandez S, Snyder GL. et al . D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade.  J Neurophysiol. 2000;  83 ((5)) 2996-3004
  • 25 Girault JA, Hemmings Jr HC, Williams KR, Nairn AC, Greengard P. Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II.  J Biol Chem. 1989;  264 ((36)) 21748-21759
  • 26 Greengard P. The neurobiology of slow synaptic transmission.  Science. 2001;  294 ((5544)) 1024-1030
  • 27 Hakansson K, Galdi S, Hendrick J, Snyder G, Greengard P, Fisone G. Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors.  J Neurochem. 2006;  96 ((2)) 482-488
  • 28 Halpain S, Girault JA, Greengard P. Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices.  Nature. 1990;  343 ((6256)) 369-372
  • 29 Hemmings Jr HC, Greengard P, Tung HY, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1.  Nature. 1984;  310 ((5977)) 503-505
  • 30 Hernandez-Lopez S, Tkatch T, Perez-Garci E. et al . D2 dopamine receptors in striatal medium spiny neurons reduce L-Type Ca2+currents and excitability via a novel PLC{beta}1-IP3-calcineurin-signaling cascade.  J Neurosci. 2000;  20 ((24)) 8987-8995
  • 31 Hu J-X, Yu L, Shi Y-Y. et al . An association study between PPP1R1B gene and schizophrenia in the Chinese population.  Prog Neuro-Psychoph. 2007;  31 ((6)) 1303-1306
  • 32 Ishikawa M, Mizukami K, Iwakiri M, Asada T. Immunohistochemical and immunoblot analysis of dopamine and cyclic AMP-regulated phosphoprotein, relative molecular mass 32,000 (DARPP-32) in the prefrontal cortex of subjects with schizophrenia and bipolar disorder.  Prog Neuro-Psychoph. 2007;  31 ((6)) 1177-1181
  • 33 Leuner K, Müller W. Dopamine in the prefrontal cortex and its different modulation by conventional and atypical antipsychotics.  Pharmacopsychiatry. 2007;  40 (Suppl. 1) S17-S26
  • 34 Lindskog M, Kim M, Wikstrom MA, Blackwell KT, Kotaleski JH. Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation.  PLoS Comput Biol. 2006;  2 ((9)) e119
  • 35 Lindskog M, Svenningsson P, Fredholm B, Greengard P, Fisone G. Mu- and delta-opioid receptor agonists inhibit DARPP-32 phosphorylation in distinct populations of striatal projection neurons.  Eur J Neurosci. 1999;  11 ((6)) 2182-2186
  • 36 Lindskog M, Svenningsson P, Pozzi L. et al . Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine.  Nature. 2002;  418 ((6899)) 774-778
  • 37 Meyer-Lindenberg A, Straub R, Lipska B. et al . Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition.  J Clin Invest. 2007;  117 ((3)) 672-682
  • 38 Miyamoto S, LaMantia AS, Duncan GE, Sullivan P, Gilmore JH, Lieberman JA. Recent advances in the neurobiology of schizophrenia.  Mol Interv. 2003;  3 ((1)) 27-39
  • 39 Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression.  Neuron. 2002;  34 ((1)) 13-25
  • 40 Nishi A, Bibb JA, Matsuyama S. et al . Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A.  J Neurochem. 2002;  81 ((4)) 832-841
  • 41 Nishi A, Bibb JA, Snyder GL, Higashi H, Nairn AC, Greengard P. Amplification of dopaminergic signaling by a positive feedback loop.  Proc Natl Acad Sci USA. 2000;  97 ((23)) 12840-12845
  • 42 Nishi A, Snyder GL, Greengard P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine.  J Neurosci. 1997;  17 ((21)) 8147-8155
  • 43 Rajasethupathy P, Vayttaden SJ, Bhalla US. Systems modeling: a pathway to drug discovery.  Curr Opin Chem Biol. 2005;  9 ((4)) 400-406
  • 44 Romero E, Ali C, Molina-Holgado E, Castellano B, Guaza C, Borrell J. Neurobehavioral and immunological consequences of prenatal imm-une activation in rats. Influence of antipsychotics.  Neuropsychopharmacology. 2006;  32 ((8)) 1791-1804
  • 45 Sheng M, Hoogenraad CC. The postsynaptic architecture of excitatory synapses: A more quantitative view.  Annu Rev Biochem. 2007;  76 ((1)) 823-847
  • 46 Snyder GL, Allen PB, Fienberg AA. et al . Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo.  J Neurosci. 2000;  20 ((12)) 4480-4488
  • 47 Snyder GL, Fienberg AA, Huganir RL, Greengard P. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32†kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor.  J Neurosci. 1998;  18 ((24)) 10297-10303
  • 48 Snyder GL, Galdi S, Fienberg AA, Allen P, Nairn AC, Greengard P. Regulation of AMPA receptor dephosphorylation by glutamate receptor agonists.  Neuropharmacology. 2003;  45 ((6)) 703-713
  • 49 Stoof JC, Kebabian JW. Independent in vitro regulation by the D-2 dopamine receptor of dopamine-stimulated efflux of cyclic AMP and K+-stimulated release of acetylcholine from rat neostriatum.  Brain Research. 1982;  250 ((2)) 263-270
  • 50 Surmeier DJ, Bargas J, Hemmings Jr HC, Nairn AC, Greengard P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons.  Neuron. 1995;  14 ((2)) 385-397
  • 51 Svenningsson P, Lindskog M, Ledent C. et al . Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors.  Proc Natl Acad Sci USA. 2000;  97 ((4)) 1856-1860
  • 52 Svenningsson P, Lindskog M, Rognoni F, Fredholm BB, Greengard P, Fisone G. Activation of adenosine A2A and dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons.  Neuroscience. 1998;  84 ((1)) 223-228
  • 53 Svenningsson P, Nishi A, Fisone G, Girault J-A, Nairn AC, Greengard P. DARPP-32: An integrator of neurotransmission.  Ann Rev Pharmaco toxicol. 2004;  44 ((1)) 269-296
  • 54 Svenningsson P, Tzavara ET, Carruthers R. et al . Diverse psychotomimetics act through a common signaling pathway.  Science. 2003;  302 ((5649)) 1412-1415
  • 55 Tretter F, Scherer J. Schizophrenia, neurobiology and the methodology of systemic modeling.  Pharmacopsychiatry. 2006; 39 (Suppl. 1);  S26-S35
  • 56 Walaas S, Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain.  J Neurosci. 1984;  4 ((1)) 84-98

Correspondence

Dr. M. Lindskog

Department of Neuroscience

Karolinska Institutet

Retziusväg 8 A2:2

17177 Stockholm

Sweden

Phone: +46/8/524 87 08 1

Email: mia.lindskog@ki.se