Pharmacopsychiatry 2006; 39: 72-75
DOI: 10.1055/s-2006-931499
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

A Few Important Points about Dopamine’s Role in Neural Network Dynamics

D. Durstewitz1
  • 1Centre for Theoretical and Computational Neuroscience, University of Plymouth, United Kingdom
Further Information

Publication History

Publication Date:
01 March 2006 (online)

Dopamine modifies a large variety of cellular and synaptic biophysical parameters in a seemingly paradoxical manner. Predicting their implications for neural network dynamics and computation seems difficult. Here I briefly review experimental and simulation data which illustrate that the diverse ionic consequences may combine such that dopamine's overall effect strongly depends on the activity state of the postsynaptic network, potentially with a temporal profile. These properties could be crucial for understanding dopamine's functional role.

References

  • 1 Aarts E, Korst J. Simulated annealing and Boltzmann machines. Chichester New York; John Wiley and sons 1989
  • 2 Amit D J, Brunel N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex.  Cereb Cortex. 1997;  7 237-252
  • 3 Brunel N, Wang X J. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition.  J Comput Neurosci. 2001;  11 63-85
  • 4 Carlsson A. Evidence for a role of dopamine in extrapyramidal functions.  Acta Neuroveg (Wien). 1964;  26 484-93
  • 5 Carlsson A. Does dopamine play a role in schizophrenia?.  Psychol Med. 1977;  7 583-597
  • 6 Cohen J, Braver T S, Brown J W. Computational perspectives on dopamine function in prefrontal cortex.  Curr Opin Neurobiol. 2002;  12 223-229
  • 7 Compte A, Brunel N, Goldman-Rakic P S, Wang X J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model.  Cereb Cortex. 2000;  10 910-923
  • 8 Dayan P, Balleine B W. Reward, motivation, and reinforcement learning.  Neuron. 2002;  36 285-98
  • 9 Durstewitz D, Kelc M, Gunturkun O. A neurocomputational theory of the dopaminergic modulation of working memory functions.  J Neurosci. 1999;  19 2807-2822
  • 10 Durstewitz D, Seamans J K, Sejnowski T J. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.  J Neurophysiol. 2000a;  83 1733-1750
  • 11 Durstewitz D, Seamans J K, Sejnowski T J. Neurocomputational models of working memory.  Nat Neurosci. 2000b;  3 Suppl 1184-91
  • 12 Durstewitz D, Seamans J K. The computational role of dopamine D1 receptors in working memory.  Neural Networks. 2002;  15 561-572
  • 13 Fuster J M. The prefrontal cortex - An update: time is of the essence.  Neuron. 2001;  30 319-333
  • 14 Goldman-Rakic P S. Cellular basis of working memory.  Neuron. 1995;  14 477-485
  • 15 Gruber A J, Solla S A, Surmeier D J, Houk J C. Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability.  J Neurophysiol. 2003;  90 1095-1114
  • 16 Hernandez-Lopez S, Bargas J, Surmeier D J, Reyes A, Galarraga E. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance.  J Neurosci. 1997;  17 3334-3342
  • 17 Lavin A, Nogueira L, Lapish C C, Wightman R M, Phillips P E, Seamans J K. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling.  J Neurosci. 2005;  25 5013-5023
  • 18 Robbins T. Chemistry of the mind: Neurochemical modulation of prefrontal cortical function.  J Comp Neurol.. 2005;  493 140-6
  • 19 Sawaguchi T, Matsumura M, Kubota K. Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex.  J Neurophysiol. 1990;  63 1401-1412
  • 20 Sawaguchi T, Goldman-Rakic P S. D1 dopamine receptors in prefrontal cortex: involvement in working memory.  Science. 1991;  251 947-950
  • 21 Schultz W, Dayan P, Montague P R. A neural substrate of prediction and reward.  Science. 1997;  275 1593-1599
  • 22 Schultz W. Predictive reward signal of dopamine neurons.  J Neurophysiol. 1998;  80 1-27
  • 23 Seamans J K, Durstewitz D, Christie B R, Stevens C F, Sejnowski T J. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons.  Proc Nat Acad Sci USA. 2001a;  98 301-306
  • 24 Seamans J K, Gorelova N, Durstewitz D, Yang C R. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons.  J Neurosci. 2001b;  21 3628-3638
  • 25 Seamans J K, Yang C R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex.  Prog Neurobiol. 2004;  74 1-58
  • 26 Trantham-Davidson H, Neely L C, Lavin A, Seamans J K. Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex.  J Neurosci. 2004;  24 10 652-10 659
  • 27 Wang X J. Synaptic reverberation underlying mnemonic persistent activity.  Trends Neurosci.. 2001;  24 455-63.
  • 28 Winterer G, Weinberger D R. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia.  Trends Neurosci. 2004;  27 683-690
  • 29 Yang C R, Seamans J K. Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: Modulation of dendritic-somatic signal integration.  J Neurosci. 1996;  16 1922-1935
  • 30 Young C E, Yang C R. Dopamine D1/D5 receptor modulates state-dependent switching of soma-dendritic Ca2+ potentials via differential protein kinase A and C activation in rat prefrontal cortical neurons.  J Neurosci. 2004;  24 8-23
  • 31 Zheng P, Zhang X X, Bunney B S, Shi W X. Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine.  Neuroscience. 1991;  91 527-535

Dr. Daniel Durstewitz

Centre for Theoretical and Computational Neuroscience

University of Plymouth

Portland Square, A 220

Plymouth, PL4 8AA

UK

Email: daniel.durstewitz@plymouth.ac.uk