Pharmacopsychiatry 2006; 39: 76-79
DOI: 10.1055/s-2006-931500
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Combination of Multimodal Imaging and Molecular Genetic Information to Investigate Complex Psychiatric Disorders

J. Gallinat1 , A. Heinz1
  • 1Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
Further Information

Publication History

Publication Date:
01 March 2006 (online)

Multimodal imaging, the combination of several brain imaging techniques in one subject, provides a wealth of parameters and favours the interpretation of complex models in schizophrenia research. Moreover, new imaging tools allow the investigation of distinct neurotransmitter systems and their modulation by pharmacological intervention. An important feature of multimodal imaging is the possibility to characterize the activation dependencies of different neurotransmitters and provide the experimental tool to test system models of brain function and dysfunction. The combination of measurement techniques with high temporal resolution (e. g. MEG, EEG) and high spatial resolution (e. g. fMRI) facilitate the understanding of local and global systems as well as time characteristics. Moreover, the association of imaging parameters with genetic variations of neurotransmitter systems allows the investigation of neurotransmitter activity and its role in the pathophysiology of schizophrenia. To overcome the limitations of standard statistical methods, new approaches in machine learning have to be adapted to handle multiple parameters obtained from brain imaging and genetic measurements.

Reference

  • 1 Alonso J M, Usrey W M, Reid R C. Precisely correlated firing in cells of the lateral geniculate nucleus.  Nature. 1996;  383 815-819
  • 2 Basar-Eroglu C, Struber D, Schurmann M, Stadler M, Basar E. Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance.  Int J Psychophysiol. 1996;  24 101-112
  • 3 Beardsley P M, Hayes B A, Balster R L. The self-administration of MK-801 can depend upon drug-reinforcement history, and its discriminative stimulus properties are phencyclidine-like in rhesus monkeys.  J Pharmacol Exp Ther. 1990;  252 953-959
  • 4 Bressler S L, Coppola R, Nakamura R. Episodic multiregional cortical coherence at multiple frequencies during visual task performance.  Nature. 1993;  366 153-156
  • 5 Buchsbaum M S, Tang C Y, Peled S, Gudbjartsson H, Lu D, Hazlett E A. et al . MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia.  Neuroreport. 1998;  9 425-430
  • 6 Carlezon W A, Jr, Devine D P, Wise R A. Habit-forming actions of nomifensine in nucleus accumbens.  Psychopharmacology (Berl). 1995;  122 194-197
  • 7 Carlezon W A, Jr, Wise R A. Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex.  J Neurosci. 1996;  16 3112-3122
  • 8 Chen Y I, Brownell A L, Galpern W, Isacson O, Bogdanov M, Beal M F. et al . Detection of dopaminergic cell loss and neural transplantation using pharmacological MRI, PET and behavioral assessment.  Neuroreport. 1999;  10 2881-2886
  • 9 Ciabarra A M, Sullivan J M, Gahn L G, Pecht G, Heinemann S, Sevarino K A. Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family.  J Neurosci. 1995;  15 6498-6508
  • 10 Das S, Sasaki Y F, Rothe T, Premkumar L S, Takasu M, Crandall J E. et al . Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A.  Nature. 1998;  393 377-381
  • 11 Dolan R J, Fletcher P, Frith C D, Friston K J, Frackowiak R S, Grasby P M. Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia.  Nature. 1995;  378 180-182
  • 12 Drevets W C, Gautier C, Price J C, Kupfer D J, Kinahan P E, Grace A A. et al . Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria.  Biol Psychiatry. 2001;  49 81-96
  • 13 Engel A K, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing.  Nat Rev Neurosci. 2001;  2 704-716
  • 14 Fletcher P, McKenna P J, Friston K J, Frith C D, Dolan R J. Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia.  Neuroimage. 1999;  9 337-342
  • 15 Foong J, Maier M, Clark C A, Barker G J, Miller D H, Ron M A. Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study.  J Neurol Neurosurg Psychiatry. 2000;  68 242-244
  • 16 Ford J M, Mathalon D H, Whitfield S, Faustman W O, Roth W T. Reduced communication between frontal and temporal lobes during talking in schizophrenia.  Biol Psychiatry. 2002;  51 485-492
  • 17 Friston K J, Frith C D. Schizophrenia: a disconnection syndrome?.  Clin Neurosci. 1995;  3 89-97
  • 18 Gallinat J, Bajbouj M, Sander T, Schlattmann P, Xu K, Ferro E F. et al . Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing.  Biol Psychiatry. 2003;  54 40-48
  • 19 Gallinat J, Götz T, Kalus P, Bajbouj M, Sander T, Winterer G. et al .Genetic variations of the NR3A subunit of the NMDA receptor modulate prefrontal cerebral activity in humans. submitted 2005
  • 20 Gallinat J, Kunz D, Senkowski D, Kienast T, Seifert F, Schubert F. et al .Hippocampal glutamate concentration predicts cerebral theta oscillations in human memory utilization. submitted 2005
  • 21 Gallinat J, Winterer G, Herrmann C S, Senkowski D. Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing.  Clin Neurophysiol. 2004;  115 1863-1874
  • 22 Graepel T, Obermayer K. A stochastic self-organizing map for proximity data.  Neural Comput. 1999;  11 139-155
  • 23 Haig A R, Gordon E, De P V, Meares R A, Bahramali H, Harris A. Gamma activity in schizophrenia: evidence of impaired network binding?.  Clin Neurophysiol. 2000;  111 1461-1468
  • 24 Heinz A, Braus D F, Smolka M N, Wrase J, Puls I, Hermann D. et al . Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter.  Nat Neurosci. 2005;  8 20-21
  • 25 Hochreiter S, Schmidhuber J. Feature extraction through LOCOCODE.  Neural Comput. 1999;  11 679-714
  • 26 Hyde T M, Ziegler J C, Weinberger D R. Psychiatric disturbances in metachromatic leukodystrophy. Insights into the neurobiology of psychosis [see comments].  Arch Neurol. 1992;  49 401-406
  • 27 Joliot M, Ribary U, Llinas R. Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding.  Proc Natl Acad Sci U S A. 1994;  91 11 748-11 751
  • 28 Juckel G, Schlagenhauf F, Koslowski M, Wüstenberg T, Villringer A, Knutson B. et al .Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage (in press) 2005
  • 29 Kubicki M, Westin C F, Maier S E, Frumin M, Nestor P G, Salisbury D F. et al . Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study.  Am J Psychiatry. 2002;  159 813-820
  • 30 Lee K H, Williams L M, Haig A, Goldberg E, Gordon E. An integration of 40 Hz Gamma and phasic arousal: novelty and routinization processing in schizophrenia.  Clin Neurophysiol. 2001;  112 1499-1507
  • 31 Marota J J, Mandeville J B, Weisskoff R M, Moskowitz M A, Rosen B R, Kosofsky B E. Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in Rat.  Neuroimage. 2000;  11 13-23
  • 32 Norman R M, Malla A K, Williamson P C, Morrison-Stewart S L, Helmes E, Cortese L. EEG coherence and syndromes in schizophrenia.  Br J Psychiatry. 1997;  170 411-415
  • 33 Reid M S, Fox L, Ho L B, Berger S P. Nicotine stimulation of extracellular glutamate levels in the nucleus accumbens: neuropharmacological characterization.  Synapse. 2000;  35 129-136
  • 34 Schubert F, Gallinat J, Seifert F, Rinneberg H. Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla.  Neuroimage. 2004;  21 1762-1771
  • 35 Senkowski D, Herrmann C S. Effects of task difficulty on evoked gamma activity and ERPs in a visual discrimination task.  Clin Neurophysiol. 2002;  113 1742-1753
  • 36 Singer W. Neuronal synchrony: a versatile code for the definition of relations?.  Neuron. 1999;  24 49-25
  • 37 Singer W, Gray C M. Visual feature integration and the temporal correlation hypothesis.  Annu Rev Neurosci. 1995;  18 555-586
  • 38 Sucher N J, Akbarian S, Chi C L, Leclerc C L, Awobuluyi M, Deitcher D L. et al . Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain.  J Neurosci. 1995;  15 6509-6520
  • 39 Volkow N D, Wang G J, Fowler J S, Logan J, Gatley S J, Wong C. et al . Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors.  J Pharmacol Exp Ther. 1999;  291 409-415
  • 40 Vorel S R, Liu X, Hayes R J, Spector J A, Gardner E L. Relapse to cocaine-seeking after hippocampal theta burst stimulation.  Science. 2001;  292 1175-1178
  • 41 Winterer G, Ziller M, Dorn H, Frick K, Mulert C, Dahhan N. et al . Cortical activation, signal-to-noise ratio and stochastic resonance during information processing in man.  Clin Neurophysiol. 1999;  110 1193-1203
  • 42 Winterer G, Ziller M, Dorn H, Frick K, Mulert C, Wuebben Y. et al . Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking during information processing.  Clin Neurophysiol. 2000;  111 837-849
  • 43 You Z B, Tzschentke T M, Brodin E, Wise R A. Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats.  J Neurosci. 1998;  18 6492-6500
  • 44 Zangen A, Hyodo K. Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens.  Neuroreport. 2002;  13 2401-2405

Dr. J. Gallinat

Charité Medicine Berlin

Clinic for Psychiatry and Psychotherapy

St. Hedwig Krankenhaus

Turmstrasse 21

D-10559 Berlin

Germany

Phone: 0049-30 2311-2969

Fax: 0049-30-2311-2903

Email: juergen.gallinat@charite.de

    >