Pharmacopsychiatry 2004; 37: 198-207
DOI: 10.1055/s-2004-832678
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Involvement of the Sigma1 Receptor in the Appetitive Effects of Cocaine

T. Maurice1 , P. Romieu1
  • 1Laboratory of Cerebral Plasticity, CNRS FRE 2693, University of Montpellier II, Montpellier, France
Further Information

Publication History

Publication Date:
17 November 2004 (online)

Cocaine induces in the brain a drastic plasticity affecting numerous neurotransmission systems. In turn, the drug provokes a complex pattern of behavioral responses, including locomotor hyperactivity, stereotyped behaviors, sensitization, and appetitive and reinforcing properties that rapidly generate the addictive process. The involvement of σ1 receptors in cocaine effects has been suggested initially through the observation that σ1 antagonists could attenuate several acute effects induced by the drug, such as hyperlocomotion, stereotypies, convulsions and lethality. We will describe thereafter the recent results showing that activation of the σ1 receptor is also involved in the appetitive properties of cocaine, as measured using place preference conditioning in mice. Using selective σ1 antagonists or an in vivo antisense strategy, the role of the σ1 receptor in acquisition, expression and reactivation of conditioned place preference was demonstrated. The observation that repeated administration of cocaine rapidly provokes overexpression of the σ1 receptor outlines its major role in these first psychological steps of addictive processes. The physiological interaction between cocaine and σ1 receptors is detailed and the possibility that effective therapeutical strategies could target the σ1 receptor is considered.

References

  • 1 Akimoto K, Hamamura T, Otsuki S. Subchronic cocaine treatment enhances cocaine-induced dopamine efflux, studied by in vivo intracerebral dialysis.  Brain Res. 1989;  490 339-344
  • 2 Alonso G, Phan V L, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T. Immunocytochemical localization of the σ1 receptor in the adult rat central nervous system.  Neuroscience. 2000;  97 155-170
  • 3 Ault D T, Werling L L. Differential modulation of NMDA-stimulated [3H]dopamine release from rat striatum by neuropeptide Y and sigma receptor ligands.  Brain Res. 1997;  760 210-217
  • 4 Calcagnetti D J, Keck B J, Quatrella L A, Schechter M D. Blockade of cocaine-induced conditioned place preference: relevance to cocaine abuse therapeutics.  Life Sci. 1995;  56 475-483
  • 5 Calligaro D O, Eldefrawi M E. High affinity stereospecific binding of [3H]cocaine in striatum and its relationship to the dopamine transporter.  Membr Biochem. 1988;  7 87-106
  • 6 Contreras P C, Quirion R, O'Donohue T L. Autoradiographic distribution of phencyclidine receptors in the rat brain using [3H]1-(1-(2-thienyl)cyclohexyl)piperidine ([3H]TCP).  Neurosci Lett. 1986;  67 101-106
  • 7 Curran T, Morgan J I. Fos: an immediate-early transcription factor in neurons.  J Neurobiol. 1995;  26 403-412
  • 8 Debler E A, Hashim A, Lajtha A, Sershen H. Ascorbic acid and striatal transport of [3H]-1-methyl-4-phenylpyridine (MPP+) and [3H]dopamine.  Life Sci. 1988;  42 2553-2559
  • 9 Ettenberg A, Geist T D. Animal model for investigating the anxiogenic effects of self-administered cocaine.  Psychopharmacology. 1991;  103 455-461
  • 10 Ettenberg A, Raven M A, Danluck D A, Necessary B D. Evidence for opponent-process actions of intravenous cocaine.  Pharmacol Biochem Behav. 1999;  64 507-512
  • 11 Gardner B, Zhu L X, Roth M D, Tashkin D P, Dubinett S M, Sharma S. Cocaine modulates cytokine and enhances tumor growth through sigma receptors.  J Neuroimmunol. 2004;  147 95-98
  • 12 Gonzalez G M, Werling L L. Release of [3H]dopamine from guinea pig striatal slices is modulated by sigma1 receptor agonists.  Naunyn Schmiedebergs Arch Pharmacol. 1997;  356 455-461
  • 13 Gonzalez-Alvear G M, Werling L L. regulation of [3H]dopamine release from rat striatal slices by sigma ligands.  J Pharmacol Exp Ther. 1994;  271 212-219
  • 14 Gonzalez-Alvear G M, Werling L L. Sigma1 receptors in rat striatum regulate NMDA-stimulated [3H]dopamine release via a presynaptic mechanism.  Eur J Pharmacol. 1995;  294 713-719
  • 15 Graybiel A M, Besson M J, Weber E. Neuroleptic-sensitive binding sites in the nigrostriatal system: evidence for differential distribution of sigma sites in the substantia nigra, pars compacta of the cat.  J Neurosci. 1989;  9 326-338
  • 16 Graybiel A M, Moratalla R, Robertson H A. Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum.  Proc Natl Acad Sci USA. 1990;  87 6912-6916
  • 17 Gundlach A L, Largent B L, Snyder S H. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine.  J Neurosci. 1986;  6 1757-1770
  • 18 Hanner M, Moebius F F, Flandorfer A, Knaus H G, Striessnig J, Kempner E, Glossman H. Purification, molecular cloning, and expression of the mammalian sigma1-binding site.  Proc Natl Acad Sci USA. 1996;  93 8072-8077
  • 19 Hayashi T, Maurice T, Su T P. Ca2+ signaling via sigma1-receptors: Novel regulatory mechanism affecting intracellular Ca2+ concentration.  J Pharmacol Exp Ther. 2000;  293 788-798
  • 20 Hayashi T, Su T P. Regulating ankyrin dynamics: Roles of sigma-1 receptors.  Proc Natl Acad Sci USA. 2001;  98 491-496
  • 21 Hellewell S B, Bowen W B. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain.  Brain Res. 1990;  527 244-253
  • 22 Hellewell S B, Bruce A, Feinstein G, Orringer J, Williams W, Bowen W B. Rat liver and kidney contain high densities of σ1 and σ2 receptors: characterization by ligand binding and photoaffinity labeling.  Eur J Pharmacol. 1994;  268 9-18
  • 23 Higgins S T. The influence of alternative reinforcers on cocaine use and abuse: A brief review.  Pharmacol Biochem Behav. 1997;  57 419-427
  • 24 Hyttel J. Inhibition of [3H]dopamine accumulation in rat striatal synaptosomes by psychotropic drugs.  Biochem Pharmacol. 1978;  27 1063-1068
  • 25 Itzhak Y, Alerhand S. Differential regulation of sigma and PCP receptors after chronic administration of haloperidol and phencyclidine in mice.  FASEB J. 1989;  3 1868-1872
  • 26 Itzhak Y, Martin J L. Cocaine-induced conditioned place preference in mice: Induction, extinction and reinstatement by related psychostimulants.  Neuropsychopharmacology. 2002;  26 130-134
  • 27 Itzhak Y, Stein I. Sigma binding sites in the brain; an emerging concept for multiple sites and their relevance for psychiatric disorders.  Life Sci. 1990;  47 1073-1081
  • 28 Jansen K L, Faull R L, Dragunow M, Leslie R A. Distribution of excitatory and inhibitory amino acid, sigma, monoamine, catecholamine, acetylcholine, opioid, neurotensin, substance P, adenosine and neuropeptide Y receptors in human motor and somatosensory cortex.  Brain Res. 1991;  566 225-238
  • 29 Jbilo O, Vidal H, Paul R, De Nys N, Bensaid M, Silve S, Carayon P, Davi D, Galiegue S, Bourrie B, Guillemot J C, Ferrara P, Loison G, Maffrand J P, Le Fur G, Casellas P. Purification and characterization of the human SR 31747A-binding protein. A nuclear membrane protein related to yeast sterol isomerase.  J Biol Chem. 1997;  272 27 107-27 115
  • 30 Jenab S, Festa E D, Russo S J, Wu H BK, Inturrisi C E, Quinones-Jenab V. MK-801 attenuates cocaine induction of c-fos and preprodynorphin mRNA levels in Fischer rats.  Molecular Brain Res. 2003;  117 237-239
  • 31 Kekuda R, Prasad P D, Fei Y J, Leibach F H, Ganapathy V. Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1).  Biochem Biophys Res Commun. 1996;  229 553-558
  • 32 Kitaichi K, Chabot J G, Moebius F F, Flandorfer A, Glossmann H, Quirion R. Expression of the purported sigma11) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy.  J Chem Neuroanat. 2000;  20 375-387
  • 33 Klein M, Cooper T B, Musacchio J M. Effects of haloperidol and reduced haloperidol on binding to sigma sites.  Eur J Pharmacol. 1994;  254 239-248
  • 34 Koob G F. Drugs of abuse: anatomy, pharmacology and function of reward pathways.  Trends Pharmacol Sci. 1992;  13 177-184
  • 35 Kuhar M J. Molecular pharmacology of cocaine: A dopamine hypothesis and its implications.  Ciba Found Symp. 1992;  166 81-89
  • 36 Largent B L, Gundlach A L, Snyder S H. Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl] piperidine.  J Pharmacol Exp Ther. 1986;  238 739-748
  • 37 Leshner A I. Addiction is a brain disease, and it matters.  Science. 1997;  278 45-47
  • 38 Liu Y, Lerner M, Brackett D J, Howard E W, Matsumoto R R. Prevention of cocaine-induced changes in behavior and genes expression by a sigma receptor antagonist.  Int J Neuropsychopharmacol. 2002;  5 S153
  • 39 Lu L, Zhang B, Liu Z, Zhang Z. Reactivation of cocaine conditioned place preference induced by stress is reversed by cholecystokinin-B receptors antagonist in rats.  Brain Res. 2002;  954 132-140
  • 40 Martin W R, Eades C G, Thompson J A, Huppler R E, Gilbert P E. The effects of morphine - and nalorphine - like drugs in the nondependent and morphine-dependent chronic spinal dog.  J Pharmacol Exp Ther. 1976;  197 517-532
  • 41 Matsumoto R R, Liu Y, Lerner M, Howard E W, Brackett D J. σ Receptors: potential medications development target for anti-cocaine agents.  Eur J Pharmacol. 2003;  469 1-12
  • 42 Matsumoto R R, Mack A L. (±)-SM 21 attenuates the convulsive and locomotor stimulatory effects of cocaine in mice.  Eur J Pharmacol. 2001;  417 R1-R2
  • 43 Matsumoto R R, McCracken K A, Pouw B, Miller J, Bowen W D, Williams W, De Costa B R. N-alkyl substituted analogs of the sigma receptor ligand BD1008 and traditional sigma receptor ligands affect cocaine-induced convulsions and lethality in mice.  Eur J Pharmacol. 2001;  411 261-273
  • 44 Matsumoto R R, McCracken K A, Pouw B, Zhang Y, Bowen W D. Involvement of sigma receptors in the behavioral effects of cocaine: evidence from novel ligands and antisense oligodeoxynucleotides.  Neuropharmacology. 2002;  42 1043-1055
  • 45 Maurice T, Lockhart B P. Neuroprotective and anti-amnesic potentials of sigma (σ) receptor ligands.  Prog Neuropsychopharmacol Biol Psychiatry. 1997;  21 69-102
  • 46 Maurice T, Martin-Fardon R, Romieu P, Matsumoto R R. Selective sigma11) receptor antagonists as a new promising strategy to prevent cocaine-induced behaviors and toxicity.  Neurosci Biobehav Res. 2002;  26 499-527
  • 47 Maurice T, Phan V L, Urani A, Kamei H, Noda Y, Nabeshima T. Neuroactive neurosteroids as endogenous effector for the sigma11) receptor: Pharmacological evidences and therapeutic opportunities.  Jpn J Pharmacol. 1999;  81 125-155
  • 48 Maurice T, Urani A, Phan V L, Romieu P. The interaction between neuroactive steroids and the sigma11) receptor function: behavioral consequences and therapeutic opportunities.  Brain Res Rev. 2001;  37 116-132
  • 49 McCann D J, Su T P. Solubilization and characterization of haloperidol-sensitive (+)-[3H]SKF-10,047 binding sites (sigma sites) from rat liver membranes.  J Pharmacol Exp Ther. 1991;  257 547-554
  • 50 McCracken K A, Bowen W D, de Costa B R, Matsumoto R R. Two novel sigma receptor ligands, BD1047 and LR172, attenuate cocaine-induced toxicity and locomotor activity.  Eur J Pharmacol. 1999;  370 225-232
  • 51 McCracken K A, Bowen W D, Matsumoto R R. Novel σ receptor ligands attenuate the locomotor stimulatory effects of cocaine.  Eur J Pharmacol. 1999;  365 35-38
  • 52 McLean S, Weber E. Autoradiographic visualization of haloperidol-sensitive sigma receptors in guinea-pig brain.  Neuroscience. 1988;  25 259-269
  • 53 Mei J, Pasternak G W. Molecular cloning and pharmacological characterization of the rat sigma1 receptor.  Biochem Pharmacol. 2001;  62 349-355
  • 54 Menkel M, Terry M, Pontecorvo M, Katz J L, Witkin J M. Selective σ ligands block stimulant effects of cocaine.  Eur J Pharmacol. 1991;  201 251-252
  • 55 Morgan J I, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun.  Annu Rev Neurosci. 1991;  14 421-451
  • 56 Morin-Surun M P, Collin T, Denavit-Saubié M, Baulieu E E, Monnet F P. Intracellular σ1 receptor modulates phospholipase C and protein kinase C activation in the brain stem.  Proc Natl Acad Sci USA. 1999;  96 8196-8199
  • 57 Mueller D, Stewart J. Cocaine-induced conditioned place preference: reinstatement by priming injections of cocaine after extinction.  Behav Brain Res. 2000;  115 39-47
  • 58 Musacchio J M, Klein M, Santiago L J. High affinity dextromethorphan binding sites in guinea pig brain: Further characterization and allosteric interactions.  J Pharmacol Exp Ther. 1988;  247 424-431
  • 59 O'Brien C P, McLellan A T. Myths about the treatment of addiction.  Lancet. 1996;  347 237-240
  • 60 Okuyama S, Imagawa Y, Ogawa S, Araki H, Ajima A, Tanaka M, Muramatsu M, Nakazato A, Yamaguchi K, Yoshida M. NE-100, a novel sigma receptor ligand: in vivo tests.  Life Sci. 1993;  53 PL285-290
  • 61 Pan W J, Hedaya M A. An animal model for simultaneous pharmacokinetic/pharmacodynamic investigations: application to cocaine.  J Pharmacol Toxicol Methods. 1998;  39 -8
  • 62 Pan Y X, Mei J, Xu J, Wan B L, Zuckerman A, Pasternak G W. Cloning and characterization of a mouse σ1 receptor.  J Neurochem. 1998;  70 2279-2285
  • 63 Parsons L H, Weiss F, Koob G F. Serotonin1B receptor stimulation enhances cocaine reinforcement.  J Neurosci. 1998;  18 10 078-10 089
  • 64 Peeters M, Romieu P, Maurice T, Su T P, Maloteaux J M, Hermans E. Involvement of the sigma1 receptor in the modulation of dopaminergic transmission by amantadine. Eur J Neurosci 2004; in press
  • 65 Phan V L, Urani A, Sandillon F, Privat A, Maurice T. Preserved sigma11) receptor expression and behavioral efficacy in the aged C57BL/6 mouse.  Neurobiol Aging. 2003;  24 865-881
  • 66 Pickens R, Thompson T. Cocaine-reinforced behavior in rats: effects of reinforcement magnitude and fixed-ratio size.  J Pharmacol Exp Ther. 1968;  161 122-129
  • 67 Prasad P D, Li H W, Fei Y J, Ganapathy M E, Fujita T, Plumley L H, Yang-Feng T L, Leibach F H, Ganapathy V. Exon-intron structure, analysis of promoter region, and chromosomal localization of the human type 1 sigma receptor gene.  J Neurochem. 1998;  70 443-451
  • 68 Quirion R, Bowen W D, Itzhak Y, Junien J L, Musacchio J M, Rothman R B, Su T P, Tam S W, Taylor D P. A proposal for the classification of sigma binding sites.  Trends Pharmacol Sci. 1992;  13 85-86
  • 69 Quirion R, Chicheportiche R, Contreras P C, Johnson K M, Lodge D, Tam S W, Woods J H, Zukin S R. Classification and nomenclature of phencyclidine and sigma receptor sites.  Trends Neurosci. 1987;  10 444-446
  • 70 Ramamoorthy J D, Ramamoorthy S, Mahesh V B, Leibach F H, Ganapathy V. Cocaine-sensitive σ-receptor and its interaction with steroid hormones in the human placental syncytiotrophoblast and in choriocarcinoma cells.  Endocrinology. 1995;  136 924-932
  • 71 Reith M EA, Meisler B E, Sershen H, Lajtha A. Structural requirements for cocaine congeners to interact with dopamine and serotonin uptake sites in mouse brain and to induce stereotyped behavior.  Biochem Pharmacol. 1986;  35 1123-1129
  • 72 Ritz M C, George F R. Cocaine-induced seizures and lethality appear to be associated with distinct central nervous system binding sites.  J Pharmacol Exp Ther. 1993;  264 1333-1343
  • 73 Ritz M C, Lamb R J, Goldberg S R, Kuhar M J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine.  Science. 1987;  237 1219-1223
  • 74 Romieu P, Martin-Fardon R, Bowen W D, Maurice T. Sigma11) receptor-related neuroactive steroids modulate cocaine-induced reward.  J Neurosci. 2003;  23 3572-3576
  • 75 Romieu P, Martin-Fardon R, Maurice T. Involvement of the σ1 receptor in the cocaine-induced conditioned place preference.  Neuroreport. 2000;  11 2885-2888
  • 76 Romieu P, Meunier J, Garcia D, Zozime N, Martin-Fardon R, Bowen W D, Maurice T. The sigma11) receptor activation is a key step for the reactivation of cocaine conditioned place preference by drug priming.  Psychopharmacology. 2004;  175 154-162
  • 77 Romieu P, Phan V L, Martin-Fardon R, Maurice T. Involvement of the σ1 receptor in cocaine-induced conditioned place preference: possible dependence on dopamine uptake blockade.  Neuropsychopharmacology. 2002;  26 444-455
  • 78 Schechter M D, Calcagnetti D J. Continued trends in the conditioned place preference literature from 1992 to 1996, inclusive, with a cross-indexed bibliography.  Neurosci Biobehav Rev. 1998;  22 827-846
  • 79 Schechter M D, Calcagnetti D J. Trends in place preference conditioning with a cross-indexed bibliography; 1957 - 1991.  Neurosci Biobehav Rev. 1993;  17 21-41
  • 80 Seth P, Fei Y J, Li H W, Huang W, Leibach F H, Ganapathy V. Cloning and functional characterization of a sigma receptor from rat brain.  J Neurochem. 1998;  70 922-931
  • 81 Seth P, Leibach F H, Ganapathy V. Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor.  Biochem Biophys Res Commun. 1997;  241 535-540
  • 82 Shaham Y, Shalev U, Lu L, de Wit H, Stewart J. The reinstatement model of drug relapse: history, methodology and major findings.  Psychopharmacology. 2003;  168 3-20
  • 83 Shalev U, Grimm J W, Shaham Y. Neurobiology of relapse to heroin and cocaine seeking: a review.  Pharmacol Rev. 2002;  54 1-42
  • 84 Sharkey J, Glen K A, Wolfe S, Kuhar M J. Cocaine binding at σ receptors.  Eur J Pharmacol. 1988;  149 171-174
  • 85 Sora I, Hall F S, Andrews A M, Itokawa M, Li X F, Wei H B, Wichems C, Lesch K P, Murphy D L, Uhl G R. Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference.  Proc Natl Acad Sci USA. 2001;  98 5300-5305
  • 86 Sora I, Wichems C, Takahashi N, Li X F, Zeng Z, Revay R, Lesch K P, Murphy D L, Uhl G R. Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice.  Proc Natl Acad Sci USA. 1998;  95 7699-7704
  • 87 Stolerman I. Drugs of abuse: Behavioural principles, methods and terms.  Trends Pharmacol Sci. 1992;  13 170-176
  • 88 Su T P, Hayashi T. Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction.  Curr Med Chem. 2003;  10 2075-2082
  • 89 Su T P. Evidence for sigma opioid receptor: Binding of [3H]SKF-10,047 to etorphine-inaccessible sites in guinea-pig brain.  J Pharmacol Exp Ther. 1982;  223 284-290
  • 90 Takebayashi M, Hayashi T, Su T P. Nerve growth factor-induced neurite sprouting in PC12 cells involves sigma-1 receptors: implications for antidepressants.  J Pharmacol Exp Ther. 2002;  303 1227-1223
  • 91 Tam S W, Cook L. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H] SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes.  Proc Natl Acad Sci USA. 1984;  81 5618-5621
  • 92 Taylor D P, Dekleva J. Potential antipsychotic BMY-14,802 selectively binds to sigma sites.  Drug Dev Res. 1987;  11 65-70
  • 93 Taylor D P, Eison M S, Moon S L, Yocca F D. BMY-14,802: A potential antipsychotic with selective affinity for σ-binding sites.  Adv Neuropsychiat Psychopharmacology. 1991;  1 307-315
  • 94 Tzschentke T M. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues.  Prog Neurobiol. 1998;  56 613-672
  • 95 Ujike H, Kuroda S, Otsuki S. σ Receptor antagonists block the development of sensitization to cocaine.  Eur J Pharmacol. 1996;  296 123-128
  • 96 Ujike H, Tsuchida K, Akiyama K, Otsuki S. Supersensitivity of σ receptors after repeated administration of cocaine.  Life Sci. 1992;  51 PL31-36
  • 97 Vaupel D B. Naltrexone fails to antagonize the sigma effects of PCP and SKF-10,047 in the dog.  Eur J Pharmacol. 1983;  92 269-274
  • 98 Walker J M, Bowen W D, Walker F O, Matsumoto R R, De Costa B, Rice K C. Sigma receptors: Biology and function.  Pharmacol Rev. 1990;  42 355-402
  • 99 Warner E A. Cocaine abuse.  Ann Intern Med. 1993;  119 226-235
  • 100 Wilbert-Lampen U, Seliger C, Zilker T, Arendt R M. Cocaine increases the endothelial release of immunoreactive endothelin and its concentrations in human plasma and urine. Reversal by coincubation with σ-receptor antagonists.  Circulation. 1998;  98 385-390
  • 101 Witkin J M, Terry M, Menkel M, Hickey P, Pontecorvo M, Ferkany J, Katz J L. Effects of the selective sigma receptor ligand 6-[6-(4-hydroxypiperidinyl)hexyloxy]-3-methylflavone (NPC 16377), on behavioral and toxic effects of cocaine.  J Pharmacol Exp Ther. 1993;  266 473-482
  • 102 Woolverton W L, Johnson K M. Neurobiology of cocaine abuse.  Trends Pharmacol Sci. 1992;  13 193-200
  • 103 Woolverton W L. Determinants of cocaine self-administration by laboratory animals.  Ciba Found Symp. 1992;  166 149-161
  • 104 Young S T, Porrino L J, Iadarola M J. Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors.  Proc Natl Acad Sci USA. 1991;  88 291-1295
  • 105 Zamanillo D, Andreu F, Ovalle S, Perez M P, Romero G, Farre A J, Guitart X. Up-regulation of sigma1 receptor mRNA in rat brain by a putative atypical antipsychotic and sigma receptor ligand.  Neurosci Lett. 2000;  282 169-172

Dr. T. Maurice

CNRS FRE 2693

University of Montpellier II

cc 090

place Eugène Bataillon

34095 Montpellier cedex 5

France

Phone: +33/0 4 67 14 36 23

Fax: +33/0 4 67 14 42 51

Email: maurice@univ-montp2.fr