Pharmacopsychiatry 2004; 37: 152-156
DOI: 10.1055/s-2004-832670
Affective Disorders
© Georg Thieme Verlag KG Stuttgart · New York

Basic Pathophysiological Mechanisms in Depression: What are They and How Might They Affect the Course of the Illness?

F. A. Henn1 , B. Vollmayr1
  • 1Central Institute of Mental Health, Department Psychiatry, Mannheim, Germany
Further Information

Publication History

Publication Date:
16 November 2004 (online)

Basic pathophysiological mechanisms in affective disorders are discussed. Studies carried out suggest that changes in neurogenesis do not underlie the behavioral changes which lead to helplessness. Since the behavioral changes leading to depressive or anxious behaviors are not correlated with changes in neurogenesis it appears unlikely that a decrease in the rate of neurogenesis is the basis for depression. A modified gene expression resulting in both functional and structural brain changes remains the most consistent hypothesis to explain how affective disorders may occur. An alternative candidate, synaptogenesis, appears as a likely candidate and requires further experimental testing.

References

  • 1 Bowley M P, Drevets W C, Ongur D, Price J L. Low glial cell numbers in the amygdala in major depressive disorder.  Biol Psychiatry. 2002;  52 404-412
  • 2 Bremner J D, Vythilingham M, Vermetten E, Nazeer A, Adil J, Khan S. Reduced volume of orbitofrontal cortex in major depression.  Biol Psychiatry. 2002;  51 273-279
  • 3 Coffey C E, Wilkinson W E, Weiner R D, Parashos I A, Djang W T, Webb M C, Figiel G S, Spritzer C E. Quantitative cerebral anatomy in depression: A controlled magnetic resonance imaging study.  Arch Gen Psychiatry. 1993;  50 7-10
  • 4 Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder.  Arch Gen Psychiatry. 2001;  58 545-553
  • 5 Czeh B, Welt T, Fischer A K, Erhardt A, Schmitt W, Muller M B, Tosch N, Fuchs E, Keck M E. Chronic psychosozial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis.  Biol Psychiatry. 2002;  52 1057-1065
  • 6 Drevets W C. Functional anatomical abnormalities in limbic and prefrontal structures in major depression.  Prog Brain Research. 2000;  126 413-431
  • 7 Drevets W C, Ongur D, Price J L. Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders.  Mol Psychiatry. 1998;  3 220-226
  • 8 Duman R S, Heninger G R, Nestler E J. A molecular and cellular theory of depression.  Arch Gen Psychiatry. 1997;  54 597-606
  • 9 Edwards E, Harkins K, Wright G, Henn F. Modulation of [3H]paroxetine binding to the 5-hydroxytryptamine uptake site in an animal model of depression.  J Neurochem. 1991;  56 1581-1586
  • 10 Frodl T, Meisenzahl E M, Zetschke T, Born C, Jager M, Groll C, Bottlender R, Leinsinger G, Moller H J. Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects.  Biol Psychiatry. 2003;  53 338-344
  • 11 Gage F H. Structural plasticity: cause, result, or correlate of depression.  Biol Psychiatry. 2000;  48 713-714
  • 12 Greenberg L, Edwards E, Henn F A. Dexamethasone suppression test in helpless rats.  Biol Psychiatry. 1989;  26 530-532
  • 13 Heninger G R, Delgado P L, Charney P S. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans.  Pharmacopsychiatry. 1996;  29 2-11
  • 14 Henn F A, Edwards E, Anderson D, Vollmayr B. Psychotherapy and antidepressant treatment of depression: evidence for similar neurobiological mechanisms.  World Psychiatry. 2002;  1 115-117
  • 15 Hirschfeld R M. History and evolution of the monoamine hypothesis of depression.  J Clin Psychiatry. 2004;  61 4-6
  • 16 Jacobs B L, Praag H, Gage F H. Adult brain neurogenesis and psychiatry: a novel theory of depression.  Mol Psychiatry. 2000;  5 262-269
  • 17 Kempermann G, Kronenberg G. Depressed new neurons-adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression.  Biol Psychiatry. 2003;  54 499-503
  • 18 Kendler K S, Aggen S H. Time, memory and the heritability of major depression.  Psychol Med. 2001;  31 923-928
  • 19 Kendler K S, Karkowski L M, Prescott C A. Causal relationship between stressful life events and the onset of major depression.  Am J Psychiatry. 1999;  156 837-841
  • 20 Kendler K S, Thornton L M, Gardner C O. Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression.  Am J Psychiatry. 2001;  158 582-586
  • 21 Martin J V, Edwards E, Johnson J O, Henn F A. Monoamine receptors in an animal model of affective disorder.  J Neurochem. 1990;  55 1142-1148
  • 22 Mayberg H. Depression, II: localization of pathophysiology.  Am J Psychiatry. 2002;  159 1979
  • 23 Mueller T I, Leon A C, Keller M B, Solomon D A, Endicott J, Coryell W, Warshaw M, Maser J D. Recurrence after recovery from major depressive disorder during 15 years of observational follow-up.  Am J Psychiatry. 1999;  156 1000-1006
  • 24 Phillips M L, Drevets W C, Rauch S L, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders.  Biol Psychiatry. 2003;  54 515-528
  • 25 Plotsky P M, Owens M J, Nemeroff C B. Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis.  Psychiatr Clin North Am. 1998;  21 293-307
  • 26 Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.  Science. 2003;  301 805-809
  • 27 Sartorius A, Vollmayr B, Neumann-Haefelin C, Ende G, Hoehn M, Henn F A. Specific creatinine rise in learned helplessness induced by electroconvulsive shock treatment.  Neuroreport. 2003;  14 2199-2201
  • 28 Sheline Y. Neuroimaging studies of mood disorder effects on the brain.  Biol Psychiatry. 2004;  54 338-352
  • 29 Sheline Y, Gado M H, Price J L. Amygdala core nuclei volumes are decreased in recurrent major depression.  Neuroreport. 1998;  22 2436
  • 30 Sherman A D, Sacquitne J L, Petty F. Specificity of the learned helplessness model of depression.  Pharmacol Biochem Behav. 1982;  16 449-454
  • 31 Soares J C, Mann J J. The functional neuroanatomy of depression.  J Psychiatr Res. 2004;  31 393-432
  • 32 Sullivan P F, Neale M C, Kendler K S. Genetic epidemiology of major depression: review and meta-analysis.  Am J Psychiatry. 2000;  157 162
  • 33 Tennant C. Life events, stress and depression: a review of recent findings.  Aust N Z J Psychiatry. 2002;  36 173-182
  • 34 Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban P C, Bock R, Klein R, Schutz G. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety.  Nat Genet. 1999;  23 99-103
  • 35 Vollmayr B, Henn F A. Learned helplessness in the rat: improvements in validity and reliability.  Brain Res Protoc. 2001;  8 1-7
  • 36 Vollmayr B, Simonis C, Weber S, Gass P, Henn F. Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness.  Biol Psychiatry. 2003;  54 1035-1040
  • 37 Vollmayr B, Bachteler D, Vendeliene V, Gass P, Spanagel R, Henn F. Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning.  Behav Brain Res. 2004;  150 217-221

Dr. med. Barbara Vollmayr

Central Institute of Mental Health

Department Psychiatry

J5

D-68159 Mannheim

Germany

Email: vollmayr@as200.zi-mannheim.de

    >