Abstract
A specially optimized air-stable Pd on activated carbon catalyst is demonstrated to be a highly active (TON up to 36,000), selective and convenient heterogeneous catalyst for CC couplings of aryl halides in Heck, Suzuki, and Sonogashira reactions. The Pd/C catalyst developed allows extremely low Pd concentrations (down to 0.0025 mol% for Heck coupling, 0.005 mol% for Suzuki coupling) and high conversions of aryl bromides within a few hours. Easy and complete Pd separation and recovery is possible.
Key words
aryl halides - catalysis - coupling - heterogeneous - palladium
References
1a
Mizoroki T.
Mori K.
Ozaki A.
Bull. Chem. Soc. Jpn.
1971,
44:
581
1b
Heck RF.
Nolley JP.
J. Org. Chem.
1972,
37:
2320
1c
Miyaura N.
Suzuki A.
Chem Rev.
1995,
95:
2457
1d
Suzuki A.
J. Organomet. Chem.
1999,
576:
147
1e
Tsuji J.
Palladium Reagents and Catalysts
Wiley;
Chichester:
1995.
1f
Bräse S.
de Meijere A.
Metal-catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1997.
2a
Beletskaya IP.
Cheprakov AV.
Chem. Rev.
2000,
100:
3009
2b
Whitcombe NJ.
Hii KK.
Gibson SE.
Tetrahedron
2001,
57:
7449
3a
Herrmann WA.
Broßmer C.
Reisinger C.-P.
Riermeier TH.
Öfele K.
Beller M.
Chem.-Eur. J.
1997,
3:
1357
3b
Reetz MT.
Westermann E.
Lohmer R.
Lohmer G.
Tetrahedron Lett.
1998,
39:
8449
3c
Reetz MT.
Westermann E.
Angew. Chem. Int. Ed.
2000,
39:
165
3d
Zapf A.
Beller M.
Chem.-Eur. J.
2001,
7:
2908
3e
Beller M.
Zapf A.
Mägerlein W.
Chem. Eng. Technol.
2001,
24:
575
3f
Herrmann WA.
Böhm VPW.
Gstöttmayr CWK.
Grosche M.
Reisinger C.-P.
Weskamp T.
J. Organomet. Chem.
2001,
617-618:
616
3g
Fürstner A.
Krause H.
Lehmann CW.
Chem. Commun.
2001,
2372
3h
Gründemann S.
Albrecht M.
Loch JA.
Faller JW.
Crabtree RH.
Organometallics
2001,
20:
5485
3i
Netherton M.
Dai C.
Neuschütz K.
Fu GC.
J. Am. Chem. Soc.
2001,
123:
10099
3j
Grasa GA.
Hillier AC.
Nolan SP.
Org. Lett.
2001,
3:
1077
3k
Yang C.
Nolan SP.
Synlett
2001,
1539
3l
Huang T.-H.
Chang H.-M.
Wu M.-Y.
Cheng C.-H.
J. Org. Chem.
2002,
67:
99
3m
Molander GA.
Rivero MR.
Org. Lett.
2002,
4:
107
3n
Loch JA.
Albrecht M.
Peris E.
Mata J.
Faller JW.
Crabtree RH.
Organometallics
2002,
21:
700
3o
Yin J.
Rainka MP.
Zhang X.-X.
Buchwald SL.
J. Am. Chem. Soc.
2002,
124:
1162
4a
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
16:
4467
4b
Alami M.
Ferri F.
Linstrumelle G.
Tetrahedron Lett.
1993,
34:
6403
4c
Hundertmark T.
Littke AF.
Buchwald SL.
Fu GC.
Org. Lett.
2000,
2:
1729
4d
Böhm VPW.
Herrmann WA.
Eur. J. Org. Chem.
2000,
3679
4e
Erdelyi M.
Gogoll A.
J. Org. Chem.
2001,
66:
4165
5a
Biffis A.
Zecca M.
Basato M.
J. Mol. Catal. A: Chem.
2001,
173:
249
5b
Blaser H.-U.
Indolese A.
Schnyder A.
Steiner H.
Studer M.
J. Mol. Catal. A: Chem.
2001,
173:
3
5c
de Vries JG.
Can. J. Chem.
2001,
79:
1086
5d
Bhanage BM.
Arai M.
Catal. Rev.
2001,
43:
315
6a
Mehnert CP.
Weaver DW.
Ying JY.
J. Am. Chem. Soc.
1998,
120:
12289
6b
Zhao F.
Bhanage BM.
Shirai M.
Arai M.
Chem.-Eur. J.
2000,
6:
843
6c
Zhao F.
Shirai M.
Arai M.
J. Mol. Catal. A: Chem.
2000,
154:
39
6d
Wagner M.
Köhler K.
Djakovitch L.
Weinkauf S.
Hagen V.
Muhler M.
Topics in Catal.
2000,
13:
319
6e
Biffis A.
Zecca M.
Basato M.
Eur. J. Inorg. Chem.
2001,
1131
6f
Köhler K.
Wagner M.
Djakovitch L.
Catal. Today
2001,
66:
105
6g
Djakovitch L.
Köhler K.
J. Am. Chem. Soc.
2001,
123:
5990
6h
Köhler K.
Heidenreich RG.
Krauter JGE.
Pietsch J.
Chem.-Eur. J.
2002,
8:
622
7
Heidenreich RG.
Krauter JGE.
Pietsch J.
Köhler K.
J. Mol. Catal. A: Chem.
2002,
182-183:
499
8a
LeBlond CR.
Andrews AT.
Sun Y.
Sowa JR.
Org. Lett.
2001,
3:
1555
8b
Mubofu EB.
Clark JH.
Macquarrie DJ.
Green Chem.
2001,
3:
23
8c
Kabalka GW.
Namboodiri V.
Wang L.
Chem. Commun.
2001,
775
8d
Cammidge AN.
Baines NJ.
Bellingham RK.
Chem. Commun.
2001,
2588
8e
Macquarrie DJ.
Gotov B.
Toma S.
Platinum Metal Rev.
2001,
45:
102
9a
Ennis DS.
McManus J.
Wood-Kaczmar W.
Richardson J.
Smith GE.
Carstairs A.
Org. Process Res. Dev.
1999,
3:
248
9b
Raggon JW.
Snyder WM.
Org. Process Res. Dev.
2002,
6:
67
10 Due to dissolution/re-precipitation processes (Pd leaching) during the reaction no exact number of catalytically active species or sites can be given. For this reason ‘turnover numbers’ (TON) and ‘turnover frequencies’ (TOF) per Pd atom are given as a measure of the catalytic activity that refer to the total amount of Pd applied (and not to active species or sites): TON = conversions of bromo-/chloroarene per total amount of palladium in the catalyst (TOF: per hour).
11
General Procedure for Heck Reaction
: Reactions were performed in sealed pressure tubes after 5 min purging with argon using non-dried solvents (Only a small decrease in activity but a large increase in Pd leaching was detected without argon atmosphere). Yields and product identification were determined by GLC and GC-MS, separation of catalyst by filtration. Typical reaction conditions: 10 mmol bromobenzene, 15 mmol styrene, 12 mmol NaOAc, 0.0025-0.05 mol% Pd (E 105 CA/W 5% Pd, product of Degussa AG), 10 mL NMP (N -methyl-2-pyrrolidone) or DMAc (N ,N -dimethylacetamide) for thermally treated(reduced) catalysts; T = 140 °C. Conversion of the bromoarenes and yields of the products 3 -5 using diethylene glycol-n -butyl ether as internal standard.
12
General Procedure for Suzuki Coupling
: Reactions were performed in sealed pressure tubes after 5 min purging with argon using non-dried solvents. Yields and product identification were determined by GLC and GC-MS, separation of catalyst by filtration. Typical reaction conditions: 5 mmol bromobenzene, 6 mmol phenylboronic acid, 6 mmol base, 0.005-0.25 mol% Pd (E 105 CA/W 5% Pd, product of Degussa AG), T = 120 °C. Conversion of arylhalides and yield of the product 7 using diethylene glycol-n -butyl ether as internal standard.
13a
Kabalka GW.
Wang L.
Namboodiri V.
Pagni RM.
Tetrahedron Lett.
2000,
41:
5151
13b
Bates RW.
Boonsombat J.
J. Chem. Soc., Perkin Trans. 1
2001,
654
13c
Buchmeister MR.
Schareina T.
Kempe R.
Wurst K.
J. Organomet. Chem.
2001,
634:
39
13d
Quignard F.
Larbot S.
Goutodier S.
Choplin A.
J. Chem. Soc., Dalton Trans.
2002,
1147
14
General Procedure for Sonogashira Coupling
: Reactions were performed in sealed pressure tubes after 5 min purging with argon using non-dried solvents. Yields and product identification were determined by GLC and GC-MS, separation of catalyst by filtration. Typical reaction conditions: 5 mmol iodobenzene, 6 mmol phenylacetylene, 6 mmol base, 0.125-0.50 mol% Pd (E 105 CA/W 5% Pd, product of Degussa AG), 10 mL solvent; T = 100 °C. Conversion of iodobenzene and yield of the product 10 using diethylene glycol-n -butyl ether as internal standard.