RSS-Feed abonnieren
DOI: 10.1055/s-2002-32589
Pd/C as a Highly Active Catalyst for Heck, Suzuki and Sonogashira Reactions
Publikationsverlauf
Publikationsdatum:
07. Februar 2007 (online)
Abstract
A specially optimized air-stable Pd on activated carbon catalyst is demonstrated to be a highly active (TON up to 36,000), selective and convenient heterogeneous catalyst for CC couplings of aryl halides in Heck, Suzuki, and Sonogashira reactions. The Pd/C catalyst developed allows extremely low Pd concentrations (down to 0.0025 mol% for Heck coupling, 0.005 mol% for Suzuki coupling) and high conversions of aryl bromides within a few hours. Easy and complete Pd separation and recovery is possible.
Key words
aryl halides - catalysis - coupling - heterogeneous - palladium
-
1a
Mizoroki T.Mori K.Ozaki A. Bull. Chem. Soc. Jpn. 1971, 44: 581 -
1b
Heck RF.Nolley JP. J. Org. Chem. 1972, 37: 2320 -
1c
Miyaura N.Suzuki A. Chem Rev. 1995, 95: 2457 -
1d
Suzuki A. J. Organomet. Chem. 1999, 576: 147 -
1e
Tsuji J. Palladium Reagents and Catalysts Wiley; Chichester: 1995. -
1f
Bräse S.de Meijere A. Metal-catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim: 1997. -
2a
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
2b
Whitcombe NJ.Hii KK.Gibson SE. Tetrahedron 2001, 57: 7449 -
3a
Herrmann WA.Broßmer C.Reisinger C.-P.Riermeier TH.Öfele K.Beller M. Chem.-Eur. J. 1997, 3: 1357 -
3b
Reetz MT.Westermann E.Lohmer R.Lohmer G. Tetrahedron Lett. 1998, 39: 8449 -
3c
Reetz MT.Westermann E. Angew. Chem. Int. Ed. 2000, 39: 165 -
3d
Zapf A.Beller M. Chem.-Eur. J. 2001, 7: 2908 -
3e
Beller M.Zapf A.Mägerlein W. Chem. Eng. Technol. 2001, 24: 575 -
3f
Herrmann WA.Böhm VPW.Gstöttmayr CWK.Grosche M.Reisinger C.-P.Weskamp T. J. Organomet. Chem. 2001, 617-618: 616 -
3g
Fürstner A.Krause H.Lehmann CW. Chem. Commun. 2001, 2372 -
3h
Gründemann S.Albrecht M.Loch JA.Faller JW.Crabtree RH. Organometallics 2001, 20: 5485 -
3i
Netherton M.Dai C.Neuschütz K.Fu GC. J. Am. Chem. Soc. 2001, 123: 10099 -
3j
Grasa GA.Hillier AC.Nolan SP. Org. Lett. 2001, 3: 1077 -
3k
Yang C.Nolan SP. Synlett 2001, 1539 -
3l
Huang T.-H.Chang H.-M.Wu M.-Y.Cheng C.-H. J. Org. Chem. 2002, 67: 99 -
3m
Molander GA.Rivero MR. Org. Lett. 2002, 4: 107 -
3n
Loch JA.Albrecht M.Peris E.Mata J.Faller JW.Crabtree RH. Organometallics 2002, 21: 700 -
3o
Yin J.Rainka MP.Zhang X.-X.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 1162 -
4a
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 16: 4467 -
4b
Alami M.Ferri F.Linstrumelle G. Tetrahedron Lett. 1993, 34: 6403 -
4c
Hundertmark T.Littke AF.Buchwald SL.Fu GC. Org. Lett. 2000, 2: 1729 -
4d
Böhm VPW.Herrmann WA. Eur. J. Org. Chem. 2000, 3679 -
4e
Erdelyi M.Gogoll A. J. Org. Chem. 2001, 66: 4165 -
5a
Biffis A.Zecca M.Basato M. J. Mol. Catal. A: Chem. 2001, 173: 249 -
5b
Blaser H.-U.Indolese A.Schnyder A.Steiner H.Studer M. J. Mol. Catal. A: Chem. 2001, 173: 3 -
5c
de Vries JG. Can. J. Chem. 2001, 79: 1086 -
5d
Bhanage BM.Arai M. Catal. Rev. 2001, 43: 315 -
6a
Mehnert CP.Weaver DW.Ying JY. J. Am. Chem. Soc. 1998, 120: 12289 -
6b
Zhao F.Bhanage BM.Shirai M.Arai M. Chem.-Eur. J. 2000, 6: 843 -
6c
Zhao F.Shirai M.Arai M. J. Mol. Catal. A: Chem. 2000, 154: 39 -
6d
Wagner M.Köhler K.Djakovitch L.Weinkauf S.Hagen V.Muhler M. Topics in Catal. 2000, 13: 319 -
6e
Biffis A.Zecca M.Basato M. Eur. J. Inorg. Chem. 2001, 1131 -
6f
Köhler K.Wagner M.Djakovitch L. Catal. Today 2001, 66: 105 -
6g
Djakovitch L.Köhler K. J. Am. Chem. Soc. 2001, 123: 5990 -
6h
Köhler K.Heidenreich RG.Krauter JGE.Pietsch J. Chem.-Eur. J. 2002, 8: 622 - 7
Heidenreich RG.Krauter JGE.Pietsch J.Köhler K. J. Mol. Catal. A: Chem. 2002, 182-183: 499 -
8a
LeBlond CR.Andrews AT.Sun Y.Sowa JR. Org. Lett. 2001, 3: 1555 -
8b
Mubofu EB.Clark JH.Macquarrie DJ. Green Chem. 2001, 3: 23 -
8c
Kabalka GW.Namboodiri V.Wang L. Chem. Commun. 2001, 775 -
8d
Cammidge AN.Baines NJ.Bellingham RK. Chem. Commun. 2001, 2588 -
8e
Macquarrie DJ.Gotov B.Toma S. Platinum Metal Rev. 2001, 45: 102 -
9a
Ennis DS.McManus J.Wood-Kaczmar W.Richardson J.Smith GE.Carstairs A. Org. Process Res. Dev. 1999, 3: 248 -
9b
Raggon JW.Snyder WM. Org. Process Res. Dev. 2002, 6: 67 -
13a
Kabalka GW.Wang L.Namboodiri V.Pagni RM. Tetrahedron Lett. 2000, 41: 5151 -
13b
Bates RW.Boonsombat J. J. Chem. Soc., Perkin Trans. 1 2001, 654 -
13c
Buchmeister MR.Schareina T.Kempe R.Wurst K. J. Organomet. Chem. 2001, 634: 39 -
13d
Quignard F.Larbot S.Goutodier S.Choplin A. J. Chem. Soc., Dalton Trans. 2002, 1147
References
Due to dissolution/re-precipitation processes (Pd leaching) during the reaction no exact number of catalytically active species or sites can be given. For this reason ‘turnover numbers’ (TON) and ‘turnover frequencies’ (TOF) per Pd atom are given as a measure of the catalytic activity that refer to the total amount of Pd applied (and not to active species or sites): TON = conversions of bromo-/chloroarene per total amount of palladium in the catalyst (TOF: per hour).
11General Procedure for Heck Reaction : Reactions were performed in sealed pressure tubes after 5 min purging with argon using non-dried solvents (Only a small decrease in activity but a large increase in Pd leaching was detected without argon atmosphere). Yields and product identification were determined by GLC and GC-MS, separation of catalyst by filtration. Typical reaction conditions: 10 mmol bromobenzene, 15 mmol styrene, 12 mmol NaOAc, 0.0025-0.05 mol% Pd (E 105 CA/W 5% Pd, product of Degussa AG), 10 mL NMP (N-methyl-2-pyrrolidone) or DMAc (N,N-dimethylacetamide) for thermally treated(reduced) catalysts; T = 140 °C. Conversion of the bromoarenes and yields of the products 3-5 using diethylene glycol-n-butyl ether as internal standard.
12General Procedure for Suzuki Coupling : Reactions were performed in sealed pressure tubes after 5 min purging with argon using non-dried solvents. Yields and product identification were determined by GLC and GC-MS, separation of catalyst by filtration. Typical reaction conditions: 5 mmol bromobenzene, 6 mmol phenylboronic acid, 6 mmol base, 0.005-0.25 mol% Pd (E 105 CA/W 5% Pd, product of Degussa AG), T = 120 °C. Conversion of arylhalides and yield of the product 7 using diethylene glycol-n-butyl ether as internal standard.
14General Procedure for Sonogashira Coupling : Reactions were performed in sealed pressure tubes after 5 min purging with argon using non-dried solvents. Yields and product identification were determined by GLC and GC-MS, separation of catalyst by filtration. Typical reaction conditions: 5 mmol iodobenzene, 6 mmol phenylacetylene, 6 mmol base, 0.125-0.50 mol% Pd (E 105 CA/W 5% Pd, product of Degussa AG), 10 mL solvent; T = 100 °C. Conversion of iodobenzene and yield of the product 10 using diethylene glycol-n-butyl ether as internal standard.