Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2016; 48(19): 3400-3412
DOI: 10.1055/s-0035-1562453
DOI: 10.1055/s-0035-1562453
paper
Dehydrogenative Allylic Aminations of But-3-enoic Acid Derivatives
Further Information
Publication History
Received: 25 May 2016
Accepted after revision: 10 June 2016
Publication Date:
22 July 2016 (online)
In memory of Professor Jean Normant: a great chemist, an extraordinary man.
Abstract
Two complementary Pd-catalyzed protocols enabling the γ-selective intermolecular allylic amination of but-3-enoic acid derivatives are reported. These transformations can be successfully achieved via either a direct Pd(II)-catalyzed protocol or by way of a one-pot Pd(II)/Pd(0)-catalyzed sequence, depending on the nature of the nitrogen nucleophile used.
Key words
palladium - catalysis - C–H activation - allylic amination - allylic acyloxylation - but-3-enoic acid derivativesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562453.
- Supporting Information
-
References
- 1 Present address: Università degli Studi dell’Insubria, Como, Italy.
- 2a Amino Group Chemistry, From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008
- 2b Hili R, Yudin AK. Nat. Chem. Biol. 2006; 2: 284
- 3a Catalytic Transformations via C–H Activation. In Science of Synthesis. Vol. 1 and 2. Yu J.-Q. Thieme; Stuttgart: 2016
- 3b Li JJ. C–H Bond Activation in Organic Synthesis . CRC Press; Boca Raton: 2015
- 4 For a review on allylic amination, see: Johannsen M, Jorgensen KA. Chem. Rev. 1998; 98: 1689
- 5a Tsuji J. Palladium Reagents and Catalysts . 2nd ed. Wiley; New York: 2004
- 5b Hoosokawa T. Aminopalladation and Related Reactions Involving Other Group 15 Atom Nucleophiles: Aminopalladation-Dehydropalladation and Related Reactions. In Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E.-i. John Wiley & Sons; New York: 2003
- 6a Liron F, Oble J, Lorion MM, Poli G. Eur. J. Org. Chem. 2014; 20: 1539
- 6b Breder A. Synlett 2014; 25: 899
- 6c Ramirez TA, Zhao B, Shi Y. Chem. Soc. Rev. 2011; 41: 931
- 6d Engelin CJ, Fristrup P. Molecules 2011; 16: 951
- 6e Jensen T, Fristrup P. Chem. Eur. J. 2009; 15: 9632
- 7a Kočovský P, Bäckvall J.-E. Chem. Eur. J. 2015; 21: 36
- 7b McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
- 7c Keith JA, Henry PM. Angew. Chem. Int. Ed. 2009; 48: 9038
- 7d Minatti A, Muñiz K. Chem. Soc. Rev. 2007; 36: 1142
-
7e Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
- 8a Patillo CC, Strambeanu II, Calleja P, Vermeulen NA, Mizuno T, White MC. J. Am. Chem. Soc. 2016; 138: 1265
- 8b Shimizu Y, Obora Y, Ishii Y. Org. Lett. 2010; 12: 1372
- 8c Yin G, Wu Y, Liu G. J. Am. Chem. Soc. 2010; 132: 11978
- 8d Reed SA, Mazzotti AR, White MC. J. Am. Chem. Soc. 2009; 131: 11701
- 8e Liu G, Yin G, Wu L. Angew. Chem. Int. Ed. 2008; 7: 4733
- 8f Reed SA, White MC. J. Am. Chem. Soc. 2008; 130: 3316
- 8g For a recent example on intermolecular Pd(II)-catalyzed allylic azidation, see: Chen H, Yang W, Wu W, Jiang H. Org. Biomol. Chem. 2014; 12: 3340
- 9 For the synthesis of α- and/or γ-amino acid derivatives from dienolates of α,β-unsaturated esters, see: Yamamoto Y, Hatsuya S, Yamada J.-I. Tetrahedron Lett. 1989; 30: 3445
- 10a Alam R, Pilarski LT, Pershagen E, Szabò KJ. J. Am. Chem. Soc. 2012; 134: 8778
- 10b Pilarski LT, Janson PG, Szabò KJ. J. Org. Chem. 2011; 76: 1503
- 10c Pilarski LT, Selander N, Bose D, Szabò KJ. Org. Lett. 2009; 11: 5518
- 11 For a precedent of Pd-catalyzed C–H activation on a bis-allylic position, see: Trost BM, Hansmann MM, Thaisrivongs DA. Angew. Chem. Int. Ed. 2012; 51: 4950
- 12 For a review on the basics of the Pd-catalyzed allylation reaction, see: Poli G, Prestat G, Liron F, Kammerer-Pentier C, Kazmaier U. Top. Organomet. Chem. 2011; 38: 1
- 13 For an example assumed to take place via this mechanism, see: Bottarelli P, Costa M, Della Ca’ N, Fava E. Tetrahedron Lett. 2013; 54: 2362
- 14 Sharma A, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 17983
- 15a Lorion MM, Duarte FJ. S, Calhorda MJ, Oble J, Poli G. Org. Lett. 2016; 18: 1020
- 15b Duarte FJ. S, Poli G, Calhorda MJ. ACS Catal. 2016; 6: 1772
- 15c Lorion MM, Oble J, Poli G. Pure Appl. Chem. 2016; 88: 381
- 15d Rajabi J, Lorion MM, Ly VL, Liron F, Oble J, Prestat G, Poli G. Chem. Eur. J. 2014; 20: 1539
- 15e Lorion MM, Nahra F, Ly VL, Mealli C, Mesaoudi A, Liron F, Oble J, Poli G. Chem. Today 2014; 32: 30
- 15f Nahra F, Liron F, Prestat G, Mealli C, Messaoudi A, Poli G. Chem. Eur. J. 2009; 15: 11078
- 17 A blank test performed as in Table 1 (entry 6), but in the absence of the nucleophile gave back the unreacted amide, which confirmed that these reaction conditions do not bring about double bond migration from B3A to B2A. Furthermore, preliminary acetoxylation experiments on Weinreb amides 1k and 1k′ gave the corresponding γ-acetoxylated product only when starting from 1k, while only the starting material was recovered when starting from 1k′ (Scheme 5). This further confirms that, under the above conditions, allylic C–H activation does not take place from the internal alkene.
- 18 See for example: Luzzio FA. Product Class 2: Triacylamines, Imides (Diacylamines), and Related Compounds. In Science of Synthesis, Houben-Weyl Methods of Molecular Transformations. Vol. 22. Thieme; Stuttgart: 2005. Chap. 21.2, 259
- 19 Thiery E, Aouf C, Belloy J, Harakat D, Le Bras J, Muzart J. J. Org. Chem. 2010; 75: 1771
- 20 See the Supporting Information for detailed procedures and full characterization of the pivaloxylated compounds 6a–k, and 6m.
- 21 We use the term ‘globally isohypsic’ as the global transformation is redox neutral, although the mechanism implies a Pd(0)/Pd(II) redox.
-
22 Giambastiani G, Poli G. J. Org. Chem. 1998; 63: 9608
- 23 Acronyms of the ligands used: 1,2-bis(diphenylphosphino)ethane (DPPE); 1,1′-bis(diphenylphosphino)ferrocene (DPPF); 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (XANTPHOS); 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP).
- 24 Given the problematic reactivity of ketone 1l in the Pd(II)-catalyzed allylic pivaloxylation, this substrate was not tested in the sequential protocol. N-Ts-carbamate A and saccharin (C) were unproductive in these sequential conditions.
- 25a Cook GR, Yu H, Sankaranarayanan S, Shanker PS. J. Am. Chem. Soc. 2003; 125: 5115
- 25b Cook GR, Shanker PS, Pararajasingham K. Angew. Chem. Int. Ed. 1999; 38: 110
- 26 Xie W, Yang J, Wang B, Li B. J. Org. Chem. 2014; 79: 8278
- 27 Mistico L, Ay E, Huynh V, Bourderioux A, Chaumeil H, Chemla F, Ferreira F, Oble J, Pérez-Luna A, Poli G, Prestat G. J. Organomet. Chem. 2014; 76: 124
- 28 Orliac A, Gomez Pardo D, Bombrun A, Cossy J. Org. Lett. 2013; 15: 902
- 29 Jacobi PA, Li Y. J. Am. Chem. Soc. 2001; 123: 9307
- 30 Abdou AM, Botros S, Hassan RA, Kamel MM, Taber DF, Taher AT. Tetrahedron 2015; 71: 139
- 31 Moriyama K, Takemura M, Togo H. J. Org. Chem. 2014; 79: 6094
- 32 The R-configured ligand was used for practical reasons, although its enantiopurity was obviously not needed.
For recent books on C–H bond functionalizations, see:
For books on Pd-catalyzed alkene functionalization, see:
For a selection of reviews on allylic C–H functionalization, see:
For reviews on aminopalladation, see:
For literature precedents on intermolecular Pd(II)-catalyzed allylic amination, see:
For a precedent of Pd-catalyzed C–H activation on the ester benzyl but-3-enoate, and the ketone 1-phenylbut-3-en-1-one, see:
For a precedent of H-bond-directed addition of phthalimide to η3-allylpalladium moieties, see: