Synlett 2016; 27(12): 1870-1872
DOI: 10.1055/s-0035-1561642
letter
© Georg Thieme Verlag Stuttgart · New York

Preparation of Aldehydes by Oxidation of Benzylic Amines with Selectfluor™ (F-TEDA-BF4)

Anett Hauser
a   Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Str. 10, 13125 Berlin, Germany
,
Rolf Bohlmann*
b   Bayer Pharma AG, Müllerstr. 178, 13353 Berlin, Germany   Email: rolf.bohlmann@bayer.com
› Author Affiliations
Further Information

Publication History

Received: 05 February 2016

Accepted after revision: 15 April 2016

Publication Date:
18 May 2016 (online)


Abstract

Aldehydes are obtained by mild oxidation of benzylic amines with Selectfluor™. The results are compared favorably with the Polonovski-like process using hypervalent iodine.

Supporting Information

 
  • References and Notes

  • 1 Chajkowski-Scarry S, Rimoldi JM. Future Med. Chem. 2014; 6: 697
    • 3a Nyffeler PT, Duron SG, Burkart MD, Vincent SP, Wong C.-H. Angew. Chem. Int. Ed. 2005; 44: 192
    • 3b Banks RE, Mohialdin-Khaffaf SN, Lal GS, Sharif I, Syvret RG. J. Chem. Soc., Chem. Commun. 1992; 595
    • 3c Stavber S. Molecules 2011; 16: 6432
  • 4 Banks RE. Synlett 1994; 831
  • 5 Antelo JM, Crugeiras J, Leis JR, Ríos A. J. Chem. Soc., Perkin Trans. 2 2000; 2071
  • 6 Sakakura A, Ohkubo T, Yamashita R, Akakura M, Ishihara K. Org. Lett. 2011; 13: 892
  • 7 Genovino J, Lütz S, Sames D, Touré B. J. Am. Chem. Soc. 2013; 135: 12346

    • Since our work for this manuscript was finished, two novel approaches for the oxidative deamination of benzylic amines have been published which should be mentioned here despite of the smaller reaction scope they cover. See:
    • 8a Ling Z, Yun L, Liu L, Wu B, Fu X. Chem. Commun. 2013; 49: 4214
    • 8b Gong JL, Qi X, Wei D, Feng J.-B, Wu X.-F. Org. Biomol. Chem. 2014; 12: 7486
  • 9 Experimental Procedure To a suspension of 1-(chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane ditetrafluoroborate (1, 0.975 mmol) in MeCN (3 mL) the amine (2, 0.75 mmol) dissolved in MeCN (3 mL) was added dropwise at r.t. The reaction was stirred at r.t. for another 20 min. The solvent was evaporated, and the obtained residue was purified via flash column chromatography using silica gel as stationary phase.
  • 10 Benzaldehyde (5a) 1H NMR (400 MHz, CDCl3): δ = 10.05 (s, 1 H), 7.89–7.95 (m, 2 H), 7.63–7.69 (m, 1 H), 7.54–7.60 (m, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 192.4, 136.5, 134.5, 129.8, 129.0 ppm. IR: ν = 3070 (m), 2837 (m), 2678 (w), 1559 (w), 1686 (vs) cm–1. 3-Iodobenzaldehyde (5b) 1H NMR (400 MHz, CDCl3): δ = 9.95 (s, 1 H), 8.23 (t, J = 1.5 Hz, 1 H), 7.98 (dt, J = 7.6, 1.6 Hz, 1 H), 7.87 (dt, J = 7.8, 1.3 Hz, 1 H), 7.31 (t, J = 7.8 Hz, 1 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 190.7, 143.2, 138.5, 138.1, 130.8, 128.9, 94.7 ppm. IR: ν = 3377 (w), 3057 (w), 2825 (m), 2727 (m), 1699 (vs) cm–1. 4-Methoxybenzaldehyde (5c) 1H NMR (400 MHz, CDCl3): δ = 9.92 (s, 1 H), 7.87 (d, J = 8.8 Hz, 2 H), 7.01–7.06 (m, 2 H), 3.92 (s, 3 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 190.8, 164.7, 132.0, 130.1, 114.4, 55.6 ppm. 4-Bromobenzaldehyde (5d) 1H NMR (300 MHz, CDCl3): δ = 10.00 (s, 1 H), 7.77 (dd, J = 6.4, 2.1 Hz, 2 H), 7.71 (dd, J = 6.8, 1.8 Hz, 2 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 191.0, 135.1, 132.4, 131.0, 129.8 ppm. IR: ν = 3350 (w), 3086 (m), 2860 (s), 1699 (vs), 1585 (vs), 1383 (vs), 835 (vs), 814 (s) cm–1. 3-Bromobenzaldehyde (5d) 1H NMR (400 MHz, CDCl3): δ = 9.99 (s, 1 H), 8.04 (t, J = 1.8 Hz, 1 H), 7.83 (dt, J = 7.7, 1.2 Hz, 1 H), 7.78 (ddd, J = 7.9, 2.0, 1.0 Hz, 1 H), 7.45 (t, J = 7.8 Hz, 1 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 190.7, 138.1, 137.3, 132.4, 130.7, 128.4, 123.4 ppm. IR: ν = 1695 (s), 1556 (s), 1252 (m), 754 (vs) cm–1. 4-Nitrobenzaldehyde (5f) 1H NMR (400 MHz, CDCl3): δ = 10.18 (s, 1 H), 8.41 (d, J = 8.6 Hz, 2 H), 8.10 (d, J = 8.8 Hz, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 190.3, 151.2, 140.1, 130.5, 124.3 ppm. IR: ν = 3107 (w), 2850 (m), 1709 (vs), 1605 (m), 1539 (s), 1381 (m), 1346 (vs), 1327 (s), 1288 (m), 1105 (m), 1007 (w), 851 (s), 818 (s), 741 (s) cm–1.