Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(04): 555-558
DOI: 10.1055/s-0035-1560546
DOI: 10.1055/s-0035-1560546
cluster
Enantioselective Addition of Thiols to ortho-Quinone Methides Catalyzed by Chiral Phosphoric Acids
Further Information
Publication History
Received: 09 September 2015
Accepted after revision: 04 November 2015
Publication Date:
07 December 2015 (online)
Abstract
The first Brønsted acid catalyzed enantioselective addition of thiols to the in situ generated ortho-quinone methides (o-QMs) is described. Complementary to the chiral amine catalyzed approach, the present reaction employs a chiral phosphoric acid as the catalyst. The readily available o-hydroxybenzyl alcohols serve as the atom-economical precursors of o-QMs to react with tritylthiol with moderate to good efficiency and enantioselectivity under mild conditions.
Key words
asymmetric catalysis - quinone methide - organocatalysis - nucleophilic addition - Brønsted acidSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560546.
- Supporting Information
-
References and Notes
- 1a Amouri H, Bras JL. Acc. Chem. Res. 2002; 35: 501
- 1b Van De Water RW, Pettus TR. R. Tetrahedron 2002; 58: 5367
- 1c Quinone Methides . Rokita SE. Wiley; Hoboken: 2009
- 1d Pathak TP, Sigman MS. J. Org. Chem. 2011; 76: 9210
- 1e Willis NJ, Bray CD. Chem. Eur. J. 2012; 18: 9160
- 1f Bai W.-J, David JG, Feng Z.-G, Weaver MG, Wu K.-L, Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
- 1g Caruana L, Fochi M, Bernardi L. Molecules 2015; 20: 11733
- 1h Wang Z, Sun J. Synthesis 2015; 47: 3629
- 2a Zhao N, Ren X, Ren J, Lu H, Ma S, Gao R, Li Y, Xu S, Li L, Yu S. Org. Lett. 2015; 17: 3118
- 2b Jepsen TH, Thomas SB, Lin Y, Stathakis CI, de Miguel I, Snyder SA. Angew. Chem. Int. Ed. 2014; 53: 6747
- 2c Song L, Yao H, Tong R. Org. Lett. 2014; 16: 3740
- 2d Green JC, Brown ER, Pettus TT. R. Org. Lett. 2012; 14: 2929
- 2e Liao DH, Li HH, Lei XG. Org. Lett. 2012; 14: 18
- 3a Wilcke D, Herdtweck E, Bach T. Synlett 2011; 1235
- 3b El-Sepelgy O, Haseloff S, Alamsetti SK, Schneider C. Angew. Chem. Int. Ed. 2014; 53: 7923
- 3c Hsiao C.-C, Liao H.-H, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13258
- 3d Zhao W, Wang Z, Chu B, Sun J. Angew. Chem. Int. Ed. 2015; 54: 1910
- 3e Wang Z, Ai F, Wang Z, Zhao W, Zhu G, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 383
- 3f Hsiao C.-C, Raja S, Liao H.-H, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
- 3g Saha S, Alamsetti SK, Schneider C. Chem. Commun. 2015; 51: 1461
- 3h Saha S, Schneider C. Chem. Eur. J. 2015; 21: 2348
- 3i Saha S, Schneider C. Org. Lett. 2015; 17: 648
- 3j Tsui GC, Liu L, List B. Angew. Chem. Int. Ed. 2015; 54: 7703
- 3k Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
- 4a Alden-Danforth E, Scerba MT, Lectka T. Org. Lett. 2008; 10: 4951
- 4b Luan Y, Schaus SE. J. Am. Chem. Soc. 2012; 134: 19965
-
4c Izquierdo J, Orue A, Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
- 4d Lv H, Jia W.-Q, Sun L.-H, Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
- 4e Caruana L, Mondatori M, Corti V, Morales S, Mazzanti A, Fochi M, Bernardi L. Chem. Eur. J. 2015; 21: 6037
- 4f Wu B, Gao X, Yan Z, Huang W.-X, Zhou Y.-G. Tetrahedron Lett. 2015; 56: 4334
- 4g Huang Y, Hayashi T. J. Am. Chem. Soc. 2015; 137: 7556
- 4h Hu H, Liu Y, Guo J, Lin L, Xu Y, Liu X, Feng X. Chem. Commun. 2015; 51: 3835
- 5a Zhang Y, Sigman MS. J. Am. Chem. Soc. 2007; 129: 3076
- 5b Jensen KH, Pathak TP, Zhang Y, Sigman MS. J. Am. Chem. Soc. 2009; 131: 17074
- 5c Jensen KH, Webb JD, Sigman MS. J. Am. Chem. Soc. 2010; 132: 17471
- 5d Jana R, Pathak TP, Jensen KH, Sigman MS. Org. Lett. 2012; 14: 4074
- 5e Zhang Y.-C, Jiang F, Wang S.-L, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 6143
- 5f Zhu R.-Y, Wang C.-S, Zheng J, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 9305
- 6 Guo W, Wu B, Zhou X, Chen P, Wang X, Zhou Y.-G, Liu Y, Li C. Angew. Chem. Int. Ed. 2015; 54: 4522
- 7 General Procedure: At −20 °C (or otherwise noted), to an oven-dried 5-mL flask charged with a mixture of the substrate 1 (0.15 mmol), the thiol (0.165 mmol), and 3 Å MS (30 mg) in CHCl3 (0.75 mL) was added the catalyst (R)-B3 (10 mg, 15 μmol, 10 mol%). The reaction mixture was stirred for 4 d at the same temperature. The reaction mixture was then treated with solid Na2CO3 (30 mg) and concentrated under reduced pressure. The residue was purified by silica gel chromatography to afford the pure product 2. (R)-4-Methyl-2-[phenyl(tritylthio)methyl]phenol (2b): Prepared as a colorless oil according to the general procedure (purification by flash column chromatography: hexanes–EtOAc, 10:1): 32.3 mg, 46% yield, 89:11 er); [α]D 25 −57.6 (c = 1.0, CHCl3). HPLC analysis of the product (Daicel CHIRALPAK AD-H column; 10% i-PrOH in hexanes; flow rate = 1.0 mL/min): t R = 5.6 min (major), 7.6 min (minor). 1H NMR (400 MHz, CDCl3): δ = 7.43 (d, J = 7.7 Hz, 6 H), 7.13–7.33 (m, 14 H), 6.83 (d, J = 8.1 Hz, 1 H), 6.75 (s, 1 H), 6.56 (d, J = 8.1 Hz, 1 H), 5.63 (s, 1 H), 4.83 (s, 1 H), 2.17 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 150.7, 143.9, 141.5, 130.3, 129.7, 129.6, 128.5, 128.4, 128.1, 127.7, 127.3, 126.8, 126.7, 116.6, 69.6, 50.4, 20.4. IR (neat): 3688, 3056, 1593, 1495, 1262, 1083, 740 cm–1. HRMS (EI): m/z [M − H] calcd for C33H27OS: 471.1783; found: 471.1767.
For reviews on o-QMs, see:
For recent examples for o-QMs in total synthesis, see:
For catalytic asymmetric reactions of o-QMs with carbon-based nucleophiles by chiral phosphoric acid catalysis, see:
For catalytic asymmetric reactions of o-QMs with carbon-based nucleophiles with other catalysts or approaches, see:
For asymmetric examples with oxygen- and nitrogen-based nucleophiles, see: