Klin Monbl Augenheilkd 2014; 231(7): 720-728
DOI: 10.1055/s-0034-1368665
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Routineuntersuchung fetaler Augen – wie und warum?

Routine Investigation of Foetal Eyes – In What Way and What For?
M. C. Herwig
Universitäts-Augenklinik, Rheinische Friedrich-Wilhelm-Universität Bonn
,
K. U. Löffler
Universitäts-Augenklinik, Rheinische Friedrich-Wilhelm-Universität Bonn
› Author Affiliations
Further Information

Publication History

eingereicht 07 April 2014

akzeptiert 16 June 2014

Publication Date:
18 July 2014 (online)

Zusammenfassung

Die Untersuchung fetaler Augen gibt zum einen Aufschluss über die Entwicklung des Auges, zum anderen trägt eine ophthalmopathologische Untersuchung zur Diagnostik systemischer und okulärer Syndrome bei. Der folgende Übersichtsartikel behandelt die Untersuchung fetaler Augen, die Zuordnung der Augen zu verschiedenen Entwicklungsstadien, Herausforderungen bei der Beurteilung fetaler Augen, die klinische Relevanz anhand von Fallbeispielen sowie akademische Fragestellungen. Die morphologische Entwicklung des Auges wurde bereits seit dem 19. Jahrhundert untersucht und ist nicht Gegenstand dieser Arbeit. Bei der Untersuchung fetaler Augen, die im Rahmen einer kinderpathologischen Obduktion entnommen werden, stehen der Diagnostik oft Artefakte im Wege, die durch Autolyse, Fixation oder mechanische Manipulation entstanden sind. Diese gilt es, von Krankheitsbildern zu unterscheiden. Neben der Untersuchung auf z. B. Kolobome und Katarakte ist auch die morphologische Einordnung des Auges zu einem Entwicklungsstadium wichtig. Anhand des anterior–posterioren Durchmessers des Auges kann z. B. ein Mikrophthalmus diagnostiziert werden. Die Fallbeispiele umfassen u. a. das Goldenhar-Syndrom, das MIDAS-Syndrom und Kolobome. Zusammenfassend ist die Beurteilung fetaler Augen eine verantwortungsvolle Aufgabe, da die okulären Befunde in die kinderpathologische Diagnose mit einfließen, auf die sich die Beratung der Eltern stützt.

Abstract

The investigation of foetal eyes not only allows for the observation of ocular development. It is supportive and sometimes even mandatory for the diagnosis of systemic and ocular syndromes. This review gives an overview about the investigation of foetal eyes, their assignment to developmental stages, challenges related to the investigation of foetal eyes, clinically relevant syndromes, and academic questions. The morphological development of the eye has been investigated since the 19th century and will not be covered in this article. The investigation of foetal eyes that have been collected during the routine paediatric autopsy, is complicated by artifacts. Artifacts are the result of autolysis, fixation, and mechanical manipulation. They have to be distinguished from genuine findings. Besides the search for findings such as coloboma or cataract, the morphological classification of the foetal eye is of importance. The anterior-posterior diameter allows for the diagnosis of microphthalmia. The case reports comprise Goldenharʼs syndrome, MIDAS syndrome and others. In conclusion, the investigation of foetal eyes is often helpful and critical for paediatric diagnostics and should be performed with great care.

 
  • Literatur

  • 1 Hinrichsen KV. Humanembryologie. Berlin: Springer; 1990: 477-500
  • 2 Barishak YR. Embryology of the Eye and its Adnexa. Basel: Karger; 2001
  • 3 Mann I. The development of the human eye. New York: Grune & Stratton, Inc.; 1950
  • 4 Seefelder R. Die Entwicklung des menschlichen Auges. In: Schieck F, Brückner A. Kurzes Handbuch der Ophthalmologie. Berlin: Springer; 1930: 476-518
  • 5 Mann IC. Notes on the anatomy of the living eye, as revealed by the Gullstrand slitlamp. J Anat 1925; Pt2: 155 – 165.
  • 6 Sellheyer K, Spitznas M. Ultrastructure of the human posterior tunica vasculosa lentis during early gestation. Graefes Arch Clin Exp Ophthalmol 1987; 225: 377-383
  • 7 Sellheyer K, Spitznas M. The fine structure of the developing human choriocapillaris during the first trimester. Graefes Arch Clin Exp Ophthalmol 1988; 226: 65-74
  • 8 Sellheyer K, Spitznas M. Morphology of the developing choroidal vasculature in the human fetus. Graefes Arch Clin Exp Ophthalmol 1988; 226: 461-467
  • 9 von Szily A. Modelle zur normalen Entwicklungsgeschichte und Missbildungslehre des Auges. Klin Monatsbl Augenheilkd 1930; 85: 210-218
  • 10 von Szily A. Die Morphographie und Phänogenetik der Papilla nervi optici. Klin Monatsbl Augenheilkd 1955; 126: 641-669
  • 11 Jakobiec FA. Ocular Anatomy, Embryology, and Teratology. Philadelphia: Harper & Row; 1982
  • 12 Mann I. Developmental Abnormalities of the Eye. 2nd. edition. London: British Medical Association; 1957
  • 13 Markowski J. Die embryologische Entwicklung des Bulbus oculi und seiner Adnexe [Thesis]. Graz: Universität Graz; 2009
  • 14 Herwig MC, Müller AM, Holz FG et al. [Analysis of an ophthalmic pathology cohort of human fetal eyes with regard to interesting findings]. Ophthalmologe 2010; 107: 1051-1058
  • 15 Streeten BW. Development of the human retinal pigment epithelium and the posterior segment. Arch Ophthalmol 1969; 81: 383-394
  • 16 Paquette LB, Jackson HA, Tavaré CJ et al. In utero eye development documented by fetal MR imaging. AJNR Am J Neuroradiol 2009; 30: 1787-1791
  • 17 Herwig MC, Müller AM, Holz FG et al. Immunolocalization of different collagens in the cornea of human fetal eyes: a developmental approach. Curr Eye Res 2013; 38: 60-69
  • 18 Tisdale AS, Spurr-Michaud SJ, Rodrigues M et al. Development of the anchoring structures of the epithelium in rabbit and human fetal corneas. Invest Ophthalmol Vis Sci 1988; 29: 727-736
  • 19 Murphy C, Alvarado J, Juster R. Prenatal and postnatal growth of the human Descemetʼs membrane. Invest Ophthalmol Vis Sci 1984; 25: 1402-1415
  • 20 Wulle KG. Electron microscopy of the fetal development of the corneal endothelium and Descemetʼs membrane of the human eye. Invest Ophthalmol 1972; 11: 897-904
  • 21 Tamm ER. [Development of the iridocorneal angle and congenital glaucoma]. Ophthalmologe 2011; 108: 610-614 616–617
  • 22 Hvidberg-Hansen J. Light and electron microscopic studies of the marginal sinus (v. Szily) in the developing human eye. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1971; 182: 134-143
  • 23 Herwig MC, Müller AM, Holz FG et al. Morphologic analysis of artifacts in human fetal eyes confounding histopathologic investigations. Invest Ophthalmol Vis Sci 2011; 52: 2712-2718
  • 24 Herwig MC, Müller AM, Klarmann-Schulz U et al. Lens artifacts in human fetal eyes – the challenge of interpreting the histomorphology of human fetal lenses. Graefes Arch Clin Exp Ophthalmol 2014; 252: 155-162
  • 25 Cogan DG. Anatomy of lens and pathology of cataracts. Exp Eye Res 1962; 1: 291-295
  • 26 Jiao J, Mo B, Wei H et al. Comparative study of laser-induced choroidal neovascularization in rats by paraffin sections, frozen sections and high-resolution optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2013; 251: 301-307
  • 27 Lange O. Zur Anatomie des Auges des Neugeborenen. II. Suprachoroidalraum. Zonula Zinnii. Ora serrata u. sog. physiologische Excavation der Sehnervenpapille. Klin Monatsbl Augenheilkd 1901; 39: 202-213
  • 28 Herwig MC, Münstermann KM, Müller AM et al. Observations in the developing human eye regarding Langeʼs fold. Acta Ophthalmol 2013; 91: e586-e587
  • 29 Daicker B. Anatomie und Pathologie der menschlichen retino-ziliaren Fundusperipherie. London: S. Karger; 1972
  • 30 Spitznas M, Koch F, Pohl S. Ultrastructural pathology of anterior persistent hyperplastic primary vitreous. Graefes Arch Clin Exp Ophthalmol 1990; 228: 487-496
  • 31 Haddad R, Font RL, Reeser F. Persistent hyperplastic primary vitreous. A clinicopathologic study of 62 cases and review of the literature. Surv Ophthalmol 1978; 23: 123-134
  • 32 Son AI, Sheleg M, Cooper MA et al. Formation of persistent hyperplastic primary vitreous in ephrin-a5-/- mice. Invest Ophthalmol Vis Sci 2014; 55: 1594-1606
  • 33 McGannon P, Miyazaki Y, Gupta PC et al. Ocular abnormalities in mice lacking the Ski proto-oncogene. Invest Ophthalmol Vis Sci 2006; 47: 4231-4237
  • 34 Freeman-Anderson NE, Zheng Y, McCalla-Martin AC et al. Expression of the Arf tumor suppressor gene is controlled by Tgfbeta2 during development. Development 2009; 136: 2081-2089
  • 35 Taharaguchi S, Yoshida K, Tomioka Y et al. Persistent hyperplastic primary vitreous in transgenic mice expressing IE180 of the pseudorabies virus. Invest Ophthalmol Vis Sci 2005; 46: 1551-1556
  • 36 Chan A, Lakshminrusimha S, Heffner R et al. Histogenesis of retinal dysplasia in trisomy 13. Diagn Pathol 2007; 2: 48
  • 37 Rohrbach JM, Kendziorra H, Hungerland E. [Synophthalmia in an early human fetus]. Klin Monatsbl Augenheilkd 1999; 214: 188-192
  • 38 Lueder GT. Clinical ocular abnormalities in infants with trisomy 13. Am J Ophthalmol 2006; 141: 1057-1060
  • 39 Allen JC, Venecia G, Opitz JM. Eye findings in the 13 trisomy syndrome. Eur J Pediatr 1977; 124: 179-183
  • 40 Hoepner J, Yanoff M. Ocular anomalies in trisomy 13–15: an analysis of 13 eyes with two new findings. Am J Ophthalmol 1972; 47: 729-737
  • 41 Berends MJ, Tan-Sindhunata G, Leegte B et al. Phenotypic variability of Cat-Eye syndrome. Genet Couns 2001; 12: 23-34
  • 42 Rosa RF, Mombach R, Zen PR et al. Clinical characteristics of a sample of patients with cat eye syndrome. Rev Assoc Med Bras 2010; 56: 462-465
  • 43 Nakamura KM, Diehl NN, Mohney BG. Incidence, ocular findings, and systemic associations of ocular coloboma: a population-based study. Arch Ophthalmol 2011; 129: 69-74
  • 44 Herwig MC, Gembruch U, Born M et al. Preterm diagnosis of choristoma and choroidal coloboma in Goldenharʼs syndrome. Pediatr Dev Pathol 2011; 14: 322-326
  • 45 Arredondo JL, Fernandes JR, Rao C. Ocular findings in pediatric deaths under 2 years of age (1994–2004). J Forensic Sci 2008; 53: 928-934
  • 46 Mudhar HS, Ford AL, Ebrahimi KB et al. Intraocular choroidal extramedullary haematopoiesis. Histopathology 2005; 46: 694-696
  • 47 Reese AB, Blodi FC. Hematopoiesis in and around the eye. Am J Ophthalmol 1954; 38: 214-221
  • 48 Jayasinghe C, Gembruch U, Kuchelmeister K et al. Fryns anophthalmia-plus syndrome in an 18-week-old fetus. Pediatr Dev Pathol 2012; 15: 58-61
  • 49 Makhoul IR, Soudack M, Kochavi O et al. Anophthalmia-plus syndrome: a clinical report and review of the literature. Am J Med Genet A 2007; 143: 64-68
  • 50 Larroche JC, Nessmann C. Focal cerebral anomalies and retinal dysplasia in a 23–24-week-old fetus. Brain Dev 1993; 15: 51-56
  • 51 Loeliger M, Duncan J, Louey S et al. Fetal growth restriction induced by chronic placental insufficiency has long-term effects on the retina but not the optic nerve. Invest Ophthalmol Vis Sci 2005; 46: 3300-3308
  • 52 Krohne TU, Aisenbrey S, Holz FG. [Current therapeutic options in retinopathy of prematurity]. Ophthalmologe 2012; 109: 1189-1197
  • 53 Kabosova A, Azar DT, Bannikov GA et al. Compositional differences between infant and adult human corneal basement membranes. Invest Ophthalmol Vis Sci 2007; 48: 4989-4999
  • 54 Kleppel MM, Michael AF. Expression of novel basement membrane components in the developing human kidney and eye. Am J Anat 1990; 187: 165-174
  • 55 White J, Werkmeister JA, Ramshaw JA et al. Organization of fibrillar collagen in the human and bovine cornea: collagen types V and III. Connect Tissue Res 1997; 36: 165-174
  • 56 Lyngholm M, Høyer PE, Vorum H et al. Immunohistochemical markers for corneal stem cells in the early developing human eye. Exp Eye Res 2008; 87: 115-121
  • 57 McLeod DS, Baba T, Bhutto IA et al. Co-expression of endothelial and neuronal nitric oxide synthases in the developing vasculatures of the human fetal eye. Graefes Arch Clin Exp Ophthalmol 2012; 250: 839-848