Synthesis 2012; 44(15): 2295-2309
DOI: 10.1055/s-0031-1289788
review
© Georg Thieme Verlag Stuttgart · New York

NHCs in Asymmetric Organocatalysis: Recent Advances in Azolium Enolate Generation and Reactivity

James Douglas
a   EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
,
Gwydion Churchill
b   AstraZeneca, Process R&D, Macclesfield, Cheshire, SK10 2NA, UK, Fax: +44(1334)463806   Email: ads10@st-andrews.ac.uk
,
Andrew D. Smith*
a   EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
› Author Affiliations
Further Information

Publication History

Received: 17 April 2012

Accepted after revision: 03 May 2012

Publication Date:
13 July 2012 (online)


Abstract

Organocatalysis represents a synthetic paradigm that has grown exponentially in popularity over the last decade, arguably becoming one of the most desired synthetic methods for the creation of enantiomerically enriched products. Within this field the use of N-heterocyclic carbenes (NHCs) has seen appreciable research activity with the realisation of many novel reaction types. This review provides a comprehensive account of recent advances in the generation and reactivity of azolium enolates with exclusive focus on those processes rendered asymmetric through the use of chiral NHCs.

1 Introduction: NHCs in Organocatalysis

1.1 Azolium Enolates

2 Azolium Enolate Generation via Ketenes

2.1 Asymmetric Formal [2+2] Cycloadditions

2.2 Asymmetric Formal [3+2] Cycloadditions

2.3 Asymmetric Formal [4+2] Cycloadditions

2.4 Asymmetric Protonation and Halogenation

3 Azolium Enolate Generation via α-Functionalised Aldehydes

4 Azolium Enolate Generation via Enals

5 Activated Esters as Azolium Enolate Precursors

6 Conclusions and Outlook

 
  • References

  • 1 Arduengo AJ, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
  • 2 Igau A, Grutzmacher H, Baceiredo A, Bertrand G. J. Am. Chem. Soc. 1988; 110: 6463
  • 3 Wanzlick HW. Angew. Chem., Int. Ed. Engl. 1962; 1: 75
  • 4 Ukai T, Tanaka R, Dokawa T. J. Pharm. Soc. Jpn. 1943; 63: 296
    • 5a Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
    • 5b Breslow R, Schmuck C. Tetrahedron Lett. 1996; 37: 8241
  • 6 Lapworth A. J. Chem. Soc., Trans. 1903; 83: 995
  • 7 Stetter H. Angew. Chem., Int. Ed. Engl. 1976; 15: 639
    • 8a Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2009; 131: 14176
    • 8b Candish L, Lupton DW. Org. Lett. 2010; 12: 4836
    • 8c De Sarkar S, Studer A. Angew. Chem. Int. Ed. 2010; 49: 9266
    • 8d Kaeobamrung J, Mahatthananchai J, Zheng P, Bode JW. J. Am. Chem. Soc. 2010; 132: 8810
    • 8e Zhu Z.-Q, Xiao J.-C. Adv. Synth. Catal. 2010; 352: 2455
    • 8f Biswas A, Sarkar SD, Fröhlich R, Studer A. Org. Lett. 2011; 13: 4966
    • 8g Mahatthananchai J, Zheng P, Bode JW. Angew. Chem. Int. Ed. 2011; 50: 1673
    • 8h Sun F-G, Sun L-H, Ye S. Adv. Synth. Catal. 2011; 353: 3134
    • 8i Wanner B, Mahatthananchai J, Bode JW. Org. Lett. 2011; 13: 5378
    • 8j Biswas A, De Sarkar S, Tebben L, Studer A. Chem. Commun. 2012; 48: 5190
    • 8k Mahatthananchai J, Kaeobamrung J, Bode JW. ACS Catal. 2012; 2: 494
    • 8l Samanta RC, Maji B, De Sarkar S, Bergander K, Fröhlich R, Mück-Lichtenfeld C, Mayr H, Studer A. Angew. Chem. Int. Ed. 2012; 21: 5234
    • 8m Yao C, Wang D, Lu J, Li T, Jiao W, Yu C. Chem.−Eur. J. 2012; 18: 1914
    • 9a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 9b Marion N, Diez-Gonzalez S, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2988
    • 9c Moore JL, Rovis T. Top. Curr. Chem. 2009; 291: 77
    • 10a Biju AT, Kuhl N, Glorius F. Acc. Chem. Res. 2011;
    • 10b Vora H, Rovis T. Aldrichimica Acta 2011; 44: 3
    • 11a Phillips E, Chan A, Scheidt K. Aldrichimica Acta 2009; 42: 55
    • 11b Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
  • 12 Zhang Y.-R, He L, Wu X, Shao P.-L, Ye S. Org. Lett. 2007; 10: 277
  • 13 Duguet N, Campbell CD, Slawin AM. Z, Smith AD. Org. Biomol. Chem. 2008; 6: 1108
    • 14a Duguet N, Donaldson A, Leckie SM, Douglas J, Shapland P, Brown TB, Churchill G, Slawin AM. Z, Smith AD. Tetrahedron: Asymmetry 2010; 21: 582
    • 14b Duguet N, Donaldson A, Leckie SM, Kallstrom EA, Campbell CD, Shapland P, Brown TB, Slawin AM. Z, Smith AD. Tetrahedron: Asymmetry 2010; 21: 601
    • 15a Cannizzaro CE, Strassner T, Houk KN. J. Am. Chem. Soc. 2001; 123: 2668
    • 15b Cannizzaro CE, Houk KN. J. Am. Chem. Soc. 2004; 126: 10992
  • 16 Tang K, Wang J, Hou Q, Cheng X, Liu Y. Tetrahedron: Asymmetry 2011; 22: 942
  • 17 He L, Lv H, Zhang Y.-R, Ye S. J. Org. Chem. 2008; 73: 8101
  • 18 Wang X.-N, Shao P.-L, Lv H, Ye S. Org. Lett. 2009; 11: 4029
  • 19 Wang X.-N, Zhang Y.-Y, Ye S. Adv. Synth. Catal. 2010; 352: 1892
  • 20 Huang X.-L, Chen X.-Y, Ye S. J. Org. Chem. 2009; 74: 7585
  • 21 Wang T, Huang X.-L, Ye S. Org. Biomol. Chem. 2010; 8: 5007
  • 22 Jian T.-Y, He L, Tang C, Ye S. Angew. Chem. Int. Ed. 2011; 50: 9104
    • 23a Beecken H, Korte F. Tetrahedron 1962; 18: 1527
    • 23b Jäger U, Schwab M, Sundermeyer W. Chem. Ber. 1986; 119: 1127
  • 24 Lv H, Zhang Y.-R, Huang X.-L, Ye S. Adv. Synth. Catal. 2008; 350: 2715
  • 25 Wang X.-N, Shen L.-T, Ye S. Org. Lett. 2011; 13: 6382
  • 26 Wang X.-N, Shen L.-T, Ye S. Chem. Commun. 2011; 47: 8388
  • 27 Shao P.-L, Chen X.-Y, Ye S. Angew. Chem. Int. Ed. 2010; 49: 8412
  • 28 Huang X.-L, He L, Shao P.-L, Ye S. Angew. Chem. Int. Ed. 2009; 48: 192
  • 29 Zhang Y.-R, Lv H, Zhou D, Ye S. Chem.–Eur. J. 2008; 14: 8473
  • 30 Lv H, Chen X.-Y, Sun L.-h, Ye S. J. Org. Chem. 2010; 75: 6973
  • 31 Jian T.-Y, Shao P.-L, Ye S. Chem. Commun. 2011; 47: 2381
  • 32 Lv H, You L, Ye S. Adv. Synth. Catal. 2009; 351: 2822
  • 33 Shao P.-L, Chen X.-Y, Sun L.-H, Ye S. Tetrahedron Lett. 2010; 51: 2316
  • 34 Shen L.-T, Shao P.-L, Ye S. Adv. Synth. Catal. 2011; 353: 1943
  • 35 Wang X.-N, Lv H, Huang X.-L, Ye S. Org. Biomol. Chem. 2009; 7: 346
  • 36 Concellón C, Duguet N, Smith AD. Adv. Synth. Catal. 2009; 351: 3001
  • 37 Douglas J, Ling KB, Concellón C, Churchill G, Slawin AM. Z, Smith AD. Eur. J. Org. Chem. 2010; 5863
  • 38 Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617
    • 39a Chow KY.-K, Bode JW. J. Am. Chem. Soc. 2004; 126: 8126
    • 39b Reynolds NT, Read de Alaniz J, Rovis T. J. Am. Chem. Soc. 2004; 126: 9518
    • 39c Chan A, Scheidt KA. Org. Lett. 2005; 7: 905
    • 39d Sohn SS, Bode JW. Org. Lett. 2005; 7: 3873
    • 39e Zeitler K. Angew. Chem. Int. Ed. 2005; 44: 7506
    • 39f Ling KB, Smith AD. Chem. Commun. 2011; 47: 373
  • 40 Mahatthananchai J, Bode JW. Chem. Sci. 2012; 3: 192
  • 41 Reynolds NT, Rovis T. J. Am. Chem. Soc. 2005; 127: 16406
  • 42 Vora HU, Rovis T. J. Am. Chem. Soc. 2010; 132: 2860
  • 43 He M, Uc GJ, Bode JW. J. Am. Chem. Soc. 2006; 128: 15088
  • 44 He M, Beahm BJ, Bode JW. Org. Lett. 2008; 10: 3817
  • 45 Hayashi Y, Itoh T, Aratake S, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 2082
  • 46 Kobayashi S, Kinoshita T, Uehara H, Sudo T, Ryu I. Org. Lett. 2009; 11: 3934
  • 47 Kawanaka Y, Phillips EM, Scheidt KA. J. Am. Chem. Soc. 2009; 131: 18028
  • 48 He M, Struble JR, Bode JW. J. Am. Chem. Soc. 2006; 128: 8418
  • 49 Kaeobamrung J, Kozlowski MC, Bode JW. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20661
  • 50 Fang X, Chen X, Chi YR. Org. Lett. 2011; 13: 4708
  • 51 Wadamoto M, Phillips EM, Reynolds TE, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 10098
  • 52 Phillips EM, Roberts JM, Scheidt KA. Org. Lett. 2010; 12: 2830
  • 53 Phillips EM, Wadamoto M, Chan A, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 3107
  • 54 Li Y, Wang X.-Q, Zheng C, You S.-L. Chem. Commun. 2009; 5823
  • 55 Lv H, Mo J, Fang X, Chi YR. Org. Lett. 2011; 13: 5366
  • 56 Hao L, Du Y, Chen X, Jiang H, Shao Y, Chi YR. Org. Lett. 2012; 14: 2154

    • For related processes using isothiourea-mediated catalysis to form ammonium enolates, see:
    • 57a Simal C, Lebl T, Slawin AM. Z, Smith AD. Angew. Chem. Int. Ed. 2012; 51: 3653
    • 57b Belmessieri D, Morrill LC, Simal C, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2011; 133: 2714
    • 57c Morrill LC, Lebl T, Slawin AM. Z, Smith AD. Chem. Sci. 2012; 3: 2088