Pharmacopsychiatry 2011; 44: S35-S42
DOI: 10.1055/s-0031-1275275
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

A Systems Approach to the Biology of Mood Disorders through Network Analysis of Candidate Genes

S. D. Detera-Wadleigh1 , N. Akula1
  • 1Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
Further Information

Publication History

Publication Date:
05 May 2011 (online)

Abstract

Meta analysis of association data of mood disorders has shown evidence for the role of particular genes in genetic risk. Integration of association data from meta analysis with differential expression data in brains of mood disorder patients could heighten the level of support for specific genes. To identify molecular mechanisms that may be disrupted in disease, a systems approach that involves analysis of biological networks created by these selected genes was employed.Interaction networks of hierarchical groupings of selected genes were generated using the Michigan Molecular Interactions (MiMI) software. Large networks were deconvoluted into subclusters of core complexes by using a community clustering program, GLay. Network nodes were functionally annotated in DAVID Bioinformatics Resource to identify enriched pathways and functional clusters. MAPK and beta adrenergic receptor signaling pathways were significantly enriched in the ANK3 and CACNA1C network. The PBRM1 network bolstered the enrichment of chromatin remodeling and transcription regulation functional clusters. Lowering the stringency for inclusion of other genes in network seeds increased network complexity and expanded the recruitment of enriched pathways to include signaling by neurotransmitter and hormone receptors, neurotrophin, ErbB and the cell cycle. We present a strategy to interrogate mechanisms in the cellular system that might be perturbed in disease. Network analysis of meta analysis- generated candidate genes that exhibited differential expression in mood disorder brains identified signaling pathways and functional clusters that may be involved in genetic risk for mood disorders.

References

  • 1 Ferreira MA, O’Donovan MC, Meng YA. et al . Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder.  Nat Genet. 2008;  40 1056-1058
  • 2 McMahon FJ, Akula N, Schulze TG. et al . Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1.  Nat Genet. 2010;  42 128-131
  • 3 Liu Y, Blackwood DH, Caesar S. et al . Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder.  Mol Psychiatry. 2011;  16 2-4
  • 4 Wray NR, Pergadia ML, Blackwood DH. et al . Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned.  Mol Psychiatry. 2010;  epub
  • 5 Lopez-Leon S, Janssens AC, Gonzalez-Zuloeta Ladd AM. et al . Meta-analyses of genetic studies on major depressive disorder.  Mol Psychiatry. 2008;  13 772-785
  • 6 Kim S, Webster MJ. The Stanley Neuropathology Consortium Integrative Database: a novel, web-based tool for exploring neuropathological markers in psychiatric disorders and the biological processes associated with abnormalities of those markers.  Neuropsychopharmacology. 2010;  35 473-482
  • 7 Gupta A, Schulze TG, Nagarajan V. et al . Interaction networks of lithium and valproate molecular targets reveal a striking enrichment of apoptosis functional clusters and neurotrophin signaling.  The Pharmacogenomics Journal. in press
  • 8 Tarcea VG, Weymouth T, Ade A. et al . Michigan molecular interactions r2: from interacting proteins to pathways.  Nucleic Acids Res. 2009;  37 D642-D646
  • 9 Gao J, Ade AS, Tarcea VG. et al . Integrating and annotating the interactome using the MiMI plugin for cytoscape.  Bioinformatics. 2009;  25 137-138
  • 10 Su G, Kuchinsky A, Morris JH. et al . GLay: community structure analysis of biological networks.  Bioinformatics. 2010;  26 3135-3137
  • 11 Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.  Nat Protoc. 2009;  4 44-57
  • 12 Dennis Jr G, Sherman BT, Hosack DA. et al . DAVID: Database for Annotation, Visualization, and Integrated Discovery.  Genome Biol. 2003;  4 P3
  • 13 Green EK, Grozeva D, Jones I. et al . The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia.  Mol Psychiatry. 2010;  15 1016-1022
  • 14 Williams HJ, Craddock N, Russo G. et al . Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries.  Hum Mol Genet. 2011;  20 387-391
  • 15 Dao DT, Mahon PB, Cai X. et al . Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans.  Biol Psychiatry. 2010;  68 801-810
  • 16 Ho L, Crabtree GR. Chromatin remodelling during development.  Nature. 2010;  463 474-484
  • 17 Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development.  Proc Natl Acad Sci USA. 1996;  93 8455-8459
  • 18 Koga M, Ishiguro H, Yazaki S. et al . Involvement of SMARCA2/BRM in the SWI/SNF chromatin-remodeling complex in schizophrenia.  Hum Mol Genet. 2009;  18 2483-2494

Correspondence

S. D. Detera-Wadleigh

NIMH/ NIH, Building 35

Rm 1A205

35 Convent Drive

Bethesda, MD 20892-3719

USA

Phone: + 1/301/496 80 89

Email: deteras@mail.nih.gov