Pharmacopsychiatry 2011; 44: S15-S26
DOI: 10.1055/s-0031-1271702
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Stress and Affective Disorders: Animal Models Elucidating the Molecular Basis of Neuroendocrine-Behavior Interactions

C. Touma1
  • 1Research Group of Psychoneuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
Further Information

Publication History

Publication Date:
04 May 2011 (online)

Abstract

Profound dysfunctions in several neuroendocrine systems have been described in patients suffering from affective disorders such as major depression. In order to elucidate the mechanisms underlying these functional alterations, animal models including mice genetically modified by either direct gene-targeting or by selective breeding approaches have been used exceedingly, revealing valuable insights into neuroendocrine pathways conserved between rodents and men. This review focuses on altered function and regulation of the hypothalamic-pituitary-adrenocortical axis, including its involvement in emotionality and stress responsiveness. In this context, the corticotropin-releasing hormone system and disturbances in glucocorticoid receptor signaling seem to be of central importance. However, changes in the expression and release patterns of vasopressin, dopamine and serotonin have also been shown to contribute to variation in emotionality, stress coping, cognitive functions and social behaviors. Affective disorders show a high degree of complexity, involving a multitude of molecular, neuroendocrine, and behavioral alterations as well as an intense gene-environment interaction, making it difficult to dissociate the primary causes from secondary consequences of the disease. Thus, interdisciplinary research, as applied in the emerging field of systems biology, involving adequate animal models and combined methodologies can significantly contribute to our understanding regarding the transmission of genetic predispositions into clinically relevant endophenotypes. It is only with deep insight into the mechanisms by which the stress hormone systems are regulated that novel treatment strategies and promising targets for therapeutic interventions can be developed in the future. Such in-depth understanding is ultimately essential to realizing our goal of predictive, preventive, and personalized medicine.

References

  • 1 Ambree O, Touma C, Görtz N. et al . Activity changes and marked stereotypic behavior precede Abeta pathology in TgCRND8 Alzheimer mice.  Neurobiol Aging. 2006;  27 955-964
  • 2 Austin MP, Mitchell PHIL, Goodwin GM. Cognitive deficits in depression: Possible implications for functional neuropathology.  Br J Psych. 2001;  178 200-206
  • 3 Axelrod J, Reisine TD. Stress hormones: their interaction and regulation.  Science. 1984;  224 452-459
  • 4 Bale TL. Sensitivity to stress: dysregulation of CRF pathways and disease development.  Horm Behav. 2005;  48 1-10
  • 5 Bale TL, Contarino A, Smith GW. et al . Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress.  Nat Genet. 2000;  24 410-414
  • 6 Bale TL, Picetti R, Contarino A. et al . Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior.  J Neurosci. 2002;  22 193-199
  • 7 Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors.  Annu Rev Pharmacol Toxicol. 2004;  44 525-557
  • 8 Barden N. Modulation of glucocorticoid receptor gene expression by antidepressant drugs.  Pharmacopsychiatry. 1996;  29 12-22
  • 9 Barden N, Stec IS, Montkowski A. et al . Endocrine profile and neuroendocrine challenge tests in transgenic mice expressing antisense RNA against the glucocorticoid receptor.  Neuroendocrinol. 1997;  66 212-220
  • 10 Beaulieu S, Rousse I, Gratton A. et al . Behavioral and endocrine impact of impaired type II glucocorticoid receptor function in a transgenic mouse model.  Ann NY Acad Sci. 1994;  746 388-391
  • 11 Belanoff JK, Flores BH, Kalezhan M. et al . Rapid reversal of psychotic depression using mifepristone.  J Clin Psychopharmacol. 2001;  21 516-521
  • 12 Berger S, Wolfer DP, Selbach O. et al . Loss of limbic mineralocorticoid receptor impairs behavioral plasticity.  Proc Natl Acad Sci USA. 2006;  103 195-200
  • 13 Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety – insights from human genetic studies.  Mol Psychiatry. 2010;  15 574-588
  • 14 Boyle MP, Brewer JA, Funatsu M. et al . Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior.  Proc Natl Acad Sci USA. 2005;  102 473-478
  • 15 Boyle MP, Kolber BJ, Vogt SK. et al . Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness.  J Neurosci. 2006;  26 1971-1978
  • 16 Chourbaji S, Gass P. Glucocorticoid receptor transgenic mice as models for depression.  Brain Res Rev. 2008;  57 554-560
  • 17 Cole TJ, Blendy JA, Monaghan AP. et al . Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation.  Genes Dev. 1995;  9 1608-1621
  • 18 Cole TJ, Myles K, Purton JF. et al . GRKO mice express an aberrant dexamethasone-binding glucocorticoid receptor, but are profoundly glucocorticoid resistant.  Mol Cell Endocrinol. 2001;  173 193-202
  • 19 Contarino A, Dellu F, Koob GF. et al . Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1.  Brain Res. 1999;  835 1-9
  • 20 Coste SC, Kesterson RA, Heldwein KA. et al . Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2.  Nat Genet. 2000;  24 403-409
  • 21 Cryan JF, Holmes A. The ascent of mouse: advances in modelling human depression and anxiety.  Nat Rev Drug Discov. 2005;  4 775-790
  • 22 Dallman MF. Fast glucocorticoid actions on brain: back to the future.  Front Neuroendocrinol. 2005;  26 103-108
  • 23 Dallmann R, Touma C, Palme R. et al . Impaired daily glucocorticoid rhythm in Per1Brd mice.  J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006;  192 769-775
  • 24 de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease.  Nat Rev Neurosci. 2005;  6 463-475
  • 25 de Kloet ER, Vreugdenhil E, Oitzl MS. et al . Brain corticosteroid receptor balance in health and disease.  Endocr Rev. 1998;  19 269-301
  • 26 DeBattista C, Belanoff J, Glass S. et al . Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression.  Biol Psychiatry. 2006;  60 1343-1349
  • 27 Denver RJ. Structural and functional evolution of vertebrate neuroendocrine stress systems.  Ann NY Acad Sci. 2009;  1163 1-16
  • 28 DeRijk RH. Single Nucleotide Polymorphisms Related to HPA Axis Reactivity.  Neuroimmunomodulation. 2009;  16 340-352
  • 29 Dijkstra I, Tilders FJ, Aguilera G. et al . Reduced activity of hypothalamic corticotropin-releasing hormone neurons in transgenic mice with impaired glucocorticoid receptor function.  J Neurosci. 1998;  18 3909-3918
  • 30 Dirks A, Groenink L, Bouwknecht JA. et al . Overexpression of corticotropin-releasing hormone in transgenic mice and chronic stress-like autonomic and physiological alterations.  Eur J Neurosci. 2002;  16 1751-1760
  • 31 El Yacoubi M, Bouali S, Popa D. et al . Behavioral, Neurochemical, and Electophysiological Characterization of a Genetic Mouse Model of Depression.  Proc Natl Acad Sci USA. 2003;  100 6227-6232
  • 32 Engelmann M, Landgraf R, Wotjak CT. The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: An old concept revisited.  Front Neuroendocrinol. 2004;  25 132-149
  • 33 Evans MR, Roberts ML, Buchanan KL. et al . Heritability of corticosterone response and changes in life history traits during selection in the zebra finch.  J Evol Biol. 2006;  19 343-352
  • 34 Evanson NK, Tasker JG, Hill MN. et al . Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling.  Endocrinology. 2010;  151 4811-4819
  • 35 Fava GA, Sonino N, Morphy MA. Major depression associated with endocrine disease.  Psychiatr Dev. 1987;  5 321-348
  • 36 Flores BH, Kenna H, Keller J. et al . Clinical and biological effects of mifepristone treatment for psychotic depression.  Neuropsychopharmacol. 2006;  31 628-636
  • 37 Furay AR, Bruestle AE, Herman JP. The Role of the forebrain glucocorticoid receptor in acute and chronic stress.  Endocrinology. 2008;  149 5482-5490
  • 38 Gammie SC, Garland Jr T, Stevenson SA. Artificial selection for increased maternal defense behavior in mice.  Behav Genet. 2006;  36 713-722
  • 39 Gass P, Reichardt HM, Strekalova T. et al . Mice with targeted mutations of glucocorticoid and mineralocortcoid receptors: models for depression and anxiety?.  Physiol Behav. 2001;  73 811-825
  • 40 Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs. low CRH/NE states.  Mol Psychiatry. 2002;  7 254-275
  • 41 Groenink L, Dirks A, Verdouw PM. et al . HPA axis dysregulation in mice overexpressing corticotropin releasing hormone.  Biol Psychiatry. 2002;  51 875-881
  • 42 Groenink L, Pattij T, De Jongh R. et al . 5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety.  Eur J Pharmacol. 2003;  463 185-197
  • 43 Hasler G, Drevets WC, Manji HK. et al . Discovering endophenotypes for major depression.  Neuropsychopharmacol. 2004;  29 1765-1781
  • 44 Heinrichs SC, Min H, Tamraz S. et al . Anti-sexual and anxiogenic behavioral consequences of corticotropin-releasing factor overexpression are centrally mediated.  Psychoneuroendocrinology. 1997;  22 215-224
  • 45 Heinrichs SC, Stenzel-Poore MP, Gold LH. et al . Learning impairment in transgenic mice with central overexpression of corticotropin-releasing factor.  Neuroscience. 1996;  74 303-311
  • 46 Heinzmann JM, Thoeringer CK, Knapman A. et al . Intrahippocampal corticosterone response in mice selectively bred for extremes in stress reactivity: a microdialysis study.  J Neuroendocrinol. 2010;  22 1187-1197
  • 47 Henn FA, Vollmayr B. Stress models of depression: forming genetically vulnerable strains.  Neurosci Biobehav Rev. 2005;  29 799-804
  • 48 Holsboer F. The corticosteroid receptor hypothesis of depression.  Neuropsychopharmacol. 2000;  23 477-501
  • 49 Holsboer F. How can we realize the promise of personalized antidepressant medicines?.  Nat Rev Neurosci. 2008;  9 638-646
  • 50 Holsboer F, Ising M. Stress hormone regulation: biological role and translation into therapy.  Ann Rev Psychol. 2010;  61 81-109
  • 51 Howell MP, Muglia LJ. Effects of genetically altered brain glucocorticoid receptor action on behavior and adrenal axis regulation in mice.  Front Neuroendocrinol. 2006;  27 275-284
  • 52 Ibarguen-Vargas Y, Surget A, Touma C. et al . Multifaceted strain-specific effects in a mouse model of depression and of antidepressant reversal.  Psychoneuroendocrinology. 2008;  33 1357-1368
  • 53 Jacobson L, Muglia LJ, Weninger SC. et al . CRH deficiency impairs but does not block pituitary-adrenal responses to diverse stressors.  Neuroendocrinol. 2000;  71 79-87
  • 54 Jansen F, Heiming RS, Lewejohann L. et al . Modulation of behavioural profile and stress response by 5-HTT genotype and social experience in adulthood.  Behav Brain Res. 2010;  207 21-29
  • 55 Joels M, Krugers HJ, Lucassen PJ. et al . Corticosteroid effects on cellular physiology of limbic cells.  Brain Res. 2009;  1293 91-100
  • 56 Joels M, Karst H, DeRijk R. et al . The coming out of the brain mineralocorticoid receptor.  TINS. 2008;  31 1-7
  • 57 Karanth S, Linthorst AC, Stalla GK. et al . Hypothalamic-pituitary-adrenocortical axis changes in a transgenic mouse with impaired glucocorticoid receptor function.  Endocrinology. 1997;  138 3476-3485
  • 58 Kas MJ, Fernandes C, Schalkwyk LC. et al . Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men.  Mol Psychiatry. 2007;  12 324-330
  • 59 Keck ME, Ohl F, Holsboer F. et al . Listening to mutant mice: a spotlight on the role of CRF/CRF receptor systems in affective disorders.  Neurosci Biobehav Rev. 2005;  29 867-889
  • 60 Keller-Wood ME, Dallman MF. Corticosteroid inhibition of ACTH secretion.  Endocr Rev. 1984;  5 1-23
  • 61 Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories.  Nature Rev Neurosci. 2002;  3 453-462
  • 62 Kishimoto T, Radulovic J, Radulovic M. et al . Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2.  Nat Genet. 2000;  24 415-419
  • 63 Knapman A, Heinzmann JM, Hellweg R. et al . Increased stress reactivity is associated with cognitive deficits and decreased hippocampal brain-derived neurotrophic factor in a mouse model of affective disorders.  J Psychiat Res. 2010;  44 566-575
  • 64 Knapman A, Heinzmann JM, Holsboer F. et al . Modeling psychotic and cognitive symptoms of affective disorders: Disrupted latent inhibition and reversal learning deficits in highly stress reactive mice.  Neurobiol Learn & Mem. 2010;  94 145-152
  • 65 Korte SM. Corticosteroids in relation to fear, anxiety and psychopathology.  Neurosci Biobehav Rev. 2001;  25 117-142
  • 66 Korte SM, Koolhaas JM, Wingfield JC. et al . The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease.  Neurosci Biobehav Rev. 2005;  29 3-38
  • 67 Krishnan V, Nestler EJ. The molecular neurobiology of depression.  Nature. 2008;  455 894-902
  • 68 Krömer SA, Kessler MS, Milfay D. et al . Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety.  J Neurosci. 2005;  25 4375-4384
  • 69 Lagerspetz KY, Tirri R, Lagerspetz KM. Neurochemical and endocrinological studies of mice selectively bred for aggressiveness.  Scand J Psychol. 1968;  9 157-160
  • 70 Landgraf R, Kessler MS, Bunck M. et al . Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: focus on vasopressin and glyoxalase-I.  Neurosci Biobehav Rev. 2007;  31 89-102
  • 71 Linthorst AC, Flachskamm C, Barden N. et al . Glucocorticoid receptor impairment alters CNS responses to a psychological stressor: an in vivo microdialysis study in transgenic mice.  Eur J Neurosci. 2000;  12 283-291
  • 72 Lu A, Steiner MA, Whittle N. et al . Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior.  Mol Psychiatry. 2008; 
  • 73 Lupien SJ, McEwen BS, Gunnar MR. et al . Effects of stress throughout the lifespan on the brain, behaviour and cognition.  Nat Rev Neurosci. 2009;  10 434-445
  • 74 Lynch CB. Response to divergent selection for nesting behavior in Mus musculus.  Genetics. 1980;  96 757-765
  • 75 Makara GB, Haller J. Non-genomic effects of glucocorticoids in the neural system. Evidence, mechanisms and implications.  Prog Neurobiol. 2001;  65 367-390
  • 76 Matthews SG, Phillips DIW. Minireview: Transgenerational Inheritance of the Stress Response: A New Frontier in Stress Research.  Endocrinology. 2010;  151 7-13
  • 77 Montkowski A, Barden N, Wotjak C. et al . Long-term antidepressant treatment reduces behavioural deficits in transgenic mice with impaired glucocorticoid receptor function.  J Neuroendocrinol. 1995;  7 841-845
  • 78 Muglia L, Jacobson L, Dikkes P. et al . Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need.  Nature. 1995;  373 427-432
  • 79 Müller MB, Holsboer F. Mice with mutations in the HPA-system as models for symptoms of depression.  Biol Psychiatry. 2006;  59 1104-1115
  • 80 Müller MB, Landgraf R, Preil J. et al . Selective activation of the hypothalamic vasopressinergic system in mice deficient for the corticotropin-releasing hormone receptor 1 is dependent on glucocorticoids.  Endocrinology. 2000;  141 4262-4269
  • 81 Müller MB, Wurst W. Getting Closer to Affective Disorders: The Role of CRH Receptor Systems.  Trends in Molecular Medicine. 2004;  10 409-415
  • 82 Müller MB, Zimmermann S, Sillaber I. et al . Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress.  Nature Neurosci. 2003;  10 1100-1107
  • 83 Nestler EJ, Barrot M, DiLeone RJ. et al . Neurobiology of depression.  Neuron. 2002;  34 13-25
  • 84 Oitzl MS, de Kloet ER, Joels M. et al . Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption.  Eur J Neurosci. 1997;  9 2284-2296
  • 85 Oitzl MS, Reichardt HM, Joels M. et al . Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory.  Proc Natl Acad Sci USA. 2001;  98 12790-12795
  • 86 Orchinik M. Glucocorticoids, Stress, and Behaviour: Shifting the Timeframe.  Horm Behav. 1998;  34 320-327
  • 87 Overli O, Sorensen C, Pulman KG. et al . Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates.  Neurosci Biobehav Rev. 2007;  31 396-412
  • 88 Pepin MC, Pothier F, Barden N. Antidepressant drug action in a transgenic mouse model of the endocrine changes seen in depression.  Mol Pharmacol. 1992;  42 991-995
  • 89 Pepin MC, Pothier F, Barden N. Impaired type II glucocorticoid-receptor function in mice bearing antisense RNA transgene.  Nature. 1992;  355 725-728
  • 90 Perlman WR, Webster MJ, Kleinman JE. et al . Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness.  Biol Psychiatry. 2004;  56 844-852
  • 91 Phillips TJ, Belknap JK, Hitzemann RJ. et al . Harnessing the mouse to unravel the genetics of human disease.  Genes Brain Behav. 2002;  1 14-26
  • 92 Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants.  Arch Int Pharmacodyn Ther. 1977;  229 327-336
  • 93 Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments.  Nature. 1977;  266 730-732
  • 94 Porter RJ, Gallagher P, Thompson JM. et al . Neurocognitive impairment in drug-free patients with major depressive disorder.  Br J Psych. 2003;  182 214-220
  • 95 Pottinger TG, Carrick TR. Modification of the plasma cortisol response to stress in rainbow trout by selective breeding.  Gen Comp Endocrinol. 1999;  116 122-132
  • 96 Prager EM, Johnson LR. Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes.  Sci Signal. 2009;  2 re5
  • 97 Preil J, Muller MB, Gesing A. et al . Regulation of the hypothalamic-pituitary-adrenocortical system in mice deficient for CRH receptors 1 and 2.  Endocrinology. 2001;  142 4946-4955
  • 98 Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders.  Am J Psychiatry. 2003;  160 1554-1565
  • 99 Reichardt HM, Kaestner KH, Tuckermann J. et al . DNA binding of the glucocorticoid receptor is not essential for survival.  Cell. 1998;  93 531-541
  • 100 Reichardt HM, Kaestner KH, Wessely O. et al . Analysis of glucocorticoid signalling by gene targeting.  J Steroid Biochem Mol Biol. 1998;  65 111-115
  • 101 Reichardt HM, Umland T, Bauer A. et al . Mice with an increased glucocorticoid receptor gene dosage show enhanced resistance to stress and endotoxic shock.  Mol Cell Biol. 2000;  20 9009-9017
  • 102 Reppermund S, Ising M, Lucae S. et al . Cognitive impairment in unipolar depression is persistent and non-specific: further evidence for the final common pathway disorder hypothesis.  Psychol Med. 2009;  39 603-614
  • 103 Reppermund S, Zihl J, Lucae S. et al . Persistent Cognitive Impairment in Depression: The Role of Psychopathology and Altered Hypothalamic-Pituitary-Adrenocortical (HPA) System Regulation.  Biol Psychiatry. 2007;  62 400-406
  • 104 Richter H, Ambree O, Lewejohann L. et al . Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom?.  Behav Brain Res. 2008;  190 74-84
  • 105 Ridder S, Chourbaji S, Hellweg R. et al . Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions.  J Neurosci. 2005;  25 6243-6250
  • 106 Rochford J, Beaulieu S, Rousse I. et al . Behavioral reactivity to aversive stimuli in a transgenic mouse model of impaired glucocorticoid (type II) receptor function: effects of diazepam and FG-7142.  Psychopharmacology (Berl). 1997;  132 145-152
  • 107 Rohleder N, Wolf JM, Wolf OT. Glucocorticoid sensitivity of cognitive and inflammatory processes in depression and posttraumatic stress disorder.  Neurosci Biobehav Rev. 2010;  35 104-114
  • 108 Rousse I, Beaulieu S, Rowe W. et al . Spatial memory in transgenic mice with impaired glucocorticoid receptor function.  NeuroReport. 1997;  8 841-845
  • 109 Rozeboom AM, Akil H, Seasholtz AF. Mineralocorticoid receptor overexpression in forebrain decreases anxiety-like behavior and alters the stress response in mice.  Proc Natl Acad Sci USA. 2007;  104 4688-4693
  • 110 Rydmark I, Wahlberg K, Ghatan PH. et al . Neuroendocrine, cognitive and structural imaging characteristics of women on longterm sickleave with job stress-induced depression.  Biol Psychiatry. 2006;  60 867-873
  • 111 Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative Actions.  Endocr Rev. 2000;  21 55-89
  • 112 Satterlee DG, Johnson WA. Selection of Japanese quail for contrasting blood corticosterone response to immobilization.  Poult Sci. 1988;  67 25-32
  • 113 Schatzberg AF. New approaches to managing psychotic depression.  J Clin Psychiatry. 2003;  64 (S 01) 19-23
  • 114 Smith GW, Aubry JM, Dellu F. et al . Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development.  Neuron. 1998;  20 1093-1102
  • 115 Sonino N, Fava GA, Raffi AR. et al . Clinical correlates of major depression in Cushing's disease.  Psychopathology. 1998;  31 302-306
  • 116 Stead JD, Clinton S, Neal C. et al . Selective breeding for divergence in novelty-seeking traits: heritability and enrichment in spontaneous anxiety-related behaviors.  Behav Genet. 2006;  36 697-712
  • 117 Stec I, Barden N, Reul JM. et al . Dexamethasone nonsuppression in transgenic mice expressing antisense RNA to the glucocorticoid receptor.  J Psychiatr Res. 1994;  28 1-5
  • 118 Steckler T, Holsboer F. Corticotropin-releasing hormone receptor subtypes and emotion.  Biol Psychiatry. 1999;  46 1480-1508
  • 119 Steimer T, Driscoll P. Divergent stress responses and coping styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects.  Stress. 2003;  6 87-100
  • 120 Stenzel-Poore MP, Cameron VA, Vaughan J. et al . Development of Cushing's syndrome in corticotropin-releasing factor in transgenic mice.  Endocrinology. 1992;  130 3378-3386
  • 121 Stenzel-Poore MP, Heinrichs SC, Rivest S. et al . Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior.  J Neurosci. 1994;  14 2579-2584
  • 122 Strohle A, Poettig M, Barden N. et al . Age- and stimulus-dependent changes in anxiety-related behaviour of transgenic mice with GR dysfunction.  NeuroReport. 1998;  9 2099-2102
  • 123 Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration.  Ageing Res Rev. 2005;  4 141-194
  • 124 Swallow JG, Garland Jr T. Selection Experiments as a Tool in Evolutionary and Comparative Physiology: Insights into Complex Traits.  Integr Comp Biol. 2005;  45 387-390
  • 125 Tasker JG, Di S, Malcher-Lopes R. Minireview: rapid glucocorticoid signaling via membrane-associated receptors.  Endocrinology. 2006;  147 5549-5556
  • 126 Tecott LH. The Genes and Brains of Mice and Men.  Am J Psychiatry. 2003;  160 646-656
  • 127 Thomsen AF, Kvist TK, Andersen PK. et al . The risk of affective disorders in patients with adrenocortical insufficiency.  Psychoneuroendocrinology. 2006;  31 614-622
  • 128 Thomson F, Craighead M. Innovative approaches for the treatment of depression: targeting the HPA axis.  Neurochem Res. 2008;  33 691-707
  • 129 Timpl P, Spanagel R, Sillaber I. et al . Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1.  Nat Genet. 1998;  19 162-166
  • 130 Touma C, Ambree O, Görtz N. et al . Age- and sex-dependent development of adrenocortical hyperactivity in a transgenic mouse model of Alzheimer's disease.  Neurobiol Aging. 2004;  25 893-904
  • 131 Touma C, Bunck M, Glasl L. et al . Mice selected for high versus low stress reactivity: a new animal model for affective disorders.  Psychoneuroendocrinology. 2008;  33 839-862
  • 132 Touma C, Palme R. Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation.  Ann NY Acad Sci. 2005;  1046 54-74
  • 133 Touma C, Fenzl T, Ruschel J. et al . Rhythmicity in mice selected for extremes in stress reactivity: behavioural, endocrine and sleep changes resembling endophenotypes of major depression.  PLoS One. 2009;  4 e4325
  • 134 Tronche F, Kellendonk C, Kretz O. et al . Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety.  Nat Genet. 1999;  23 99-103
  • 135 Tsien JZ, Chen DF, Gerber D. et al . Subregion- and cell type-restricted gene knockout in mouse brain.  Cell. 1996;  87 1317-1326
  • 136 Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses.  Nat Rev Neurosci. 2009;  10 397-409
  • 137 Urani A, Chourbaji S, Gass P. Mutant mouse models of depression: candidate genes and current mouse lines.  Neurosci Biobehav Rev. 2005;  29 805-828
  • 138 Vale W, Spiess J, Rivier C. et al . Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin.  Science. 1981;  213 1394-1397
  • 139 van Gaalen MM, Stenzel-Poore MP, Holsboer F. et al . Effects of transgenic overproduction of CRH on anxiety-like behaviour.  Eur J Neurosci. 2002;  15 2007-2015
  • 140 Veenema AH, Meijer OC, de Kloet ER. et al . Genetic Selection for Coping Style Predicts Stressor Susceptibility.  J Neuroendocrinol. 2003;  15 256-267
  • 141 Voigtlander T, Unterberger U, Touma C. et al . Prominent corticosteroid disturbance in experimental prion disease.  Eur J Neurosci. 2006;  23 2723-2730
  • 142 Von Holst D. The Concept of Stress and Its Relevance for Animal Behavior.  Adv Study Behav. 1998;  27 1-131
  • 143 Wahlberg K, Ghatan PH, Modell S. et al . Suppressed neuroendocrine stress response in depressed women on job-stress-related long-term sick leave: a stable marker potentially suggestive of preexisting vulnerability.  Biol Psychiatry. 2009;  65 742-747
  • 144 Webster MJ, Knable MB, O’Grady J. et al . Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders.  Mol Psychiatry. 2002;  7 985-994 924
  • 145 Wei Q, Hebda-Bauer EK, Pletsch A. et al . Overexpressing the glucocorticoid receptor in forebrain causes an aging-like neuroendocrine phenotype and mild cognitive dysfunction.  J Neurosci. 2007;  27 8836-8844
  • 146 Wei Q, Xin-Yu L, Liu L. et al . Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability.  Proc Natl Acad Sci USA. 2004;  101 11851-11856
  • 147 Weninger SC, Dunn AJ, Muglia LJ. et al . Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH.  Proc Natl Acad Sci USA. 1999;  96 8283-8288
  • 148 Yehuda R, Halligan SL, Grossman R. et al . The cortisol and glucocorticoid receptor response to low dose dexamethasone administration in aging combat veterans and holocaust survivors with and without posttraumatic stress disorder.  Biol Psychiatry. 2002;  52 393-403
  • 149 Young AH, Gallagher P, Watson S. et al . Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder.  Neuropsychopharmacol. 2004;  29 1538-1545

Correspondence

Dr. C. Touma

Research Group of

Psychoneuroendocrinology

Max Planck Institute of

Psychiatry

Kraepelinstraße 2-10

80804 Munich

Germany

Phone: +49/89/30622 228

Fax: +49/89/30622 569

Email: touma@mpipsykl.mpg.de