Subscribe to RSS
DOI: 10.1055/a-2389-7434
Gold(I)-Catalyzed Intramolecular C(sp3)–H Bond Functionalization
The Spanish Agencia Estatal de Investigación (AEI) is gratefully acknowledged (grant PID2022-138232NB-I00). R.M. and C.R.A. also express their thankfulness to the AEI and the Principality of Asturias for a contract associated with the grant above (PID2019-107469RB-I00) and a fellowship (AYUD0029T01), respectively.
Dedicated to Prof. Carreira on the occasion of his 60th birthday
Abstract
The merger of two of the most rapidly growing fields in catalysis, namely gold-catalysis and C–H activation/functionalization has resulted in major breakthroughs, affording unprecedented transformations. This review covers the most relevant contributions in this field during the last 10 years, restricted to the intramolecular functionalization of C(sp3)–H bonds.
1 Introduction
2 Carbene/Vinylidene Insertion
3 [1,5]-H Shift
4 Gold-Stabilized Vinyl Cation Mediated
5 Summary and Outlook
Key words
gold-catalysis - C–H functionalization - cyclization - carbene insertion - [1,5]-hydride shift - vinyl cationPublication History
Received: 17 July 2024
Accepted after revision: 16 August 2024
Accepted Manuscript online:
16 August 2024
Article published online:
30 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Mamane V, Gress T, Krause H, Fürstner A. J. Am. Chem. Soc. 2004; 126: 8654
- 1b Staben ST, Kennedy-Smith JJ, Toste FD. Angew. Chem. Int. Ed. 2004; 43: 5350
- 1c Nieto-Oberhuber C, Muñoz MP, Buñuel E, Nevado C, Cárdenas DJ, Echavarren AM. Angew. Chem. Int. Ed. 2004; 43: 2402
- 1d Hashmi AS. K, Schwarz L, Choi J.-H, Frost TM. Angew. Chem. Int. Ed. 2000; 39: 2285
- 2a Norman RO. C, Parr WJ. E, Thomas CB. J. Chem. Soc., Perkin Trans. 1 1976; 811
- 2b Norman RO. C, Parr WJ. E, Thomas CB. J. Chem. Soc., Perkin Trans. 1 1976; 1983
- 3a Ito Y, Sawamura M, Hayashi T. J. Am. Chem. Soc. 1986; 108: 6405
- 3b Togni A, Pastor SD. J. Org. Chem. 1990; 55: 1649
- 3c Fukuda Y, Utimoto K. J. Org. Chem. 1991; 56: 3729
- 3d Hayashi T, Sawamura M, Ito Y. Tetrahedron 1992; 48: 1999
- 3e Teles JH, Brode S, Chabanas M. Angew. Chem. Int. Ed. 1998; 37: 1415
- 3f Ito H, Yajima T, Tateiwa J, Hosomi A. Tetrahedron Lett. 1999; 40: 7807
- 3g Mizushima E, Sato K, Hayashi T, Tanaka M. Angew. Chem. Int. Ed. 2002; 41: 4563
- 4a Erkelens J, Kemball C, Galway AK. Trans. Faraday Soc. 1963; 59: 1181
- 4b Parravano G. J. Catal. 1970; 18: 320
- 4c Rushford HG, Whan DA. Trans. Faraday Soc. 1971; 67: 3577
- 5a Ambegave SB, Shubham, More TR, Patil NT. Chem. Commun. 2023; 59: 8007
- 5b Rocchigiani L, Bochmann M. Chem. Rev. 2021; 121: 8364
- 5c Reyes RL, Iwai T, Sawamura M. Chem. Rev. 2021; 121: 8926
- 5d Ye L.-W, Zhu X.-Q, Sahani RL, Xu Y, Qian P.-C, Liu R.-S. Chem. Rev. 2021; 121: 9039
- 5e Hendrich CM, Sekine K, Koshikawa T, Tanaka K, Hashmi AS. K. Chem. Rev. 2021; 121: 9113
- 5f Collado A, Nelson DJ, Nolan SP. Chem. Rev. 2021; 121: 8559
- 5g Chintawar CC, Yadav AK, Kumar A, Sancheti SP, Patil NT. Chem. Rev. 2021; 121: 8478
- 5h Witzel S, Hashmi AS. K, Xie J. Chem. Rev. 2021; 121: 8868
- 5i Lu Z, Li T, Mudshinge SR, Xu B, Hammond GB. Chem. Rev. 2021; 121: 8452
- 5j Jiménez-Núñez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
- 5k Bongers N, Krause N. Angew. Chem. Int. Ed. 2008; 47: 2178
- 5l Gorin DJ, Sherry BD, Toste FD. Chem. Rev. 2008; 108: 3351
- 5m Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 5n Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
- 5o Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
- 5p Hashmi AS. K. Angew. Chem. Int. Ed. 2005; 44: 6990
- 6a Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
- 6b He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 6c Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 6d Ackermann L. Chem. Rev. 2011; 111: 1315
- 6e Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 7a Quintavalla A, Carboni D, Lombardo M. ChemCatChem 2024; 16: e202301225
- 7b Lu P, Lu Z. Synthesis 2023; 55: 1042
- 7c Chirik PJ, Engle KM, Simmons EM, Wisniewski SM. Org. Process Res. Dev. 2023; 27: 1160
- 7d Haibach MC, Shekhar S, Ahmed TS, Ickes AR. Org. Process Res. Dev. 2023; 27: 423
- 7e Federsel HJ. Synthesis 2022; 54: 4257
- 7f Das A, Panda TK. ChemCatChem 2022; 15: e202201011
- 7g Beil S, Markiewicz M, Pereira CS, Stepnowski P, Thöming J, Stolte S. Chem. Rev. 2021; 121: 13132
- 8a Das A, Patil NT. Chem. Eur. J. 2022; 28: e202104371
- 8b Bhakta S, Ghosh T. Tetrahedron 2021; 90: 132167
- 8c Praveen C, Dupeux A, Michelet V. Chem. Eur. J. 2021; 27: 10495
- 8d Fricke C, Reid WB, Schoenebeck F. Eur. J. Org. Chem. 2020; 7119
- 8e Banerjee S, Bhoyare VW, Patil NT. Chem. Commun. 2020; 56: 2677
- 8f Akram MO, Banerjee S, Saswade SS, Bedi V, Patil NT. Chem. Commun. 2018; 54: 11069
- 8g Ma B, Liu L, Zhang J. Asian J. Org. Chem. 2018; 7: 2015
- 8h de Haro T, Nevado C. Synthesis 2011; 2530
- 8i Boorman TC, Larrosa I. Chem. Soc. Rev. 2011; 40: 1910
- 8j Skouta R, Li CJ. Tetrahedron 2008; 64: 4917
- 9 Xie J, Pan C, Abdukader A, Zhu C. Chem. Soc. Rev. 2014; 43: 5245
- 10a Harris RJ, Widenhoefer RA. Chem. Soc. Rev. 2016; 45: 4533
- 10b Wang Y, Muratore ME, Echavarren AM. Chem. Eur. J. 2015; 21: 7332
- 10c Gagosz F. Synthesis 2019; 51: 1087
- 10d Zhao X, Rudolph M, Hashmi AS. K. Chem. Commun. 2019; 55: 12127
- 10e Hashmi AS. K. Acc. Chem. Res. 2014; 47: 864
- 10f Braun I, Asiri AM, Hashmi AS. K. ACS Catal. 2013; 3: 1902
- 11a Horino Y, Yamamoto T, Ueda K, Kuroda S, Toste FD. J. Am. Chem. Soc. 2009; 131: 2809
- 11b Lemire G, Gandon V, Cariou K, Hours A, Fukuyama T, Dhimane A.-L, Fensterbank L, Malacria M. J. Am. Chem. Soc. 2009; 131: 2993
- 11c Escribano-Cuesta A, López-Carrillo V, Janssen D, Echavarren AM. Chem. Eur. J. 2009; 15: 5646
- 11d Bhunia S, Liu R.-S. J. Am. Chem. Soc. 2008; 130: 16488
- 11e Hashmi AS. K, Schafer S, Wolfle M, Gil CD, Fischer P, Laguna A, Blanco MC, Gimeno MC. Angew. Chem. Int. Ed. 2007; 46: 6184
- 11f Fructos MR, Frémont P, Nolan SP, Díaz-Requejo NM, Pérez PJ. Organometallics 2006; 25: 2237
- 12a Vachhani DD, Galli M, Jacobs J, Van Meervelt L, Van der Eycken EV. Chem. Commun. 2013; 49: 7171
- 12b Nösel P, Lauterbach T, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2013; 19: 8634
- 12c Hashmi AS. K, Braun I, Nösel P, Schädlich J, Wieteck M, Rudolph M, Rominger F. Angew. Chem. Int. Ed. 2012; 51: 4456
- 12d Ye L, Wang Y, Aue DH, Zhang L. J. Am. Chem. Soc. 2012; 134: 31
- 13a Barluenga J, Sigüeiro R, Vicente R, Ballesteros A, Tomás M, Rodríguez MA. Angew. Chem. Int. Ed. 2012; 51: 10377
- 13b Jurberg ID, Odabachian Y, Gagosz F. J. Am. Chem. Soc. 2010; 132: 3543
- 13c Zhou G, Zhang J. Chem. Commun. 2010; 46: 6593
- 13d Jiménez-Núñez E, Raducan M, Lauterbach T, Molawi K, Solorio CR, Echavarren AM. Angew. Chem. Int. Ed. 2009; 48: 6152
- 13e Cui L, Peng Y, Zhang L. J. Am. Chem. Soc. 2009; 131: 8394
- 13f ref. 11d
- 14a Popov S, Shao B, Bagdasarian AL, Benton TR, Zou L, Yang Z, Houk KN, Nelson HM. Science 2018; 361: 381
- 14b Zhang F, Das S, Walkinshaw AJ, Casitas A, Taylor M, Suero MG, Gaunt MJ. J. Am. Chem. Soc. 2014; 136: 8851
- 14c Jin T, Himuro M, Yamamoto Y. J. Am. Chem. Soc. 2010; 132: 5590
- 14d Biermann U, Koch R, Metzger JO. Angew. Chem. Int. Ed. 2006; 45: 3076
- 15 For an excellent review on metal-carbene insertion reactions, see: Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
- 16a Fructos MR, Díaz-Requejo MM, Pérez PJ. Chem. Commun. 2016; 52: 7326
- 16b Díaz-Requejo MM, Pérez PJ. Chem. Rev. 2008; 108: 3379
- 17a Yamamoto K, López E, Barrio P, Borge J, López LA. Chem. Eur. J. 2020; 26: 6999
- 17b López E, Lonzi G, López LA. Synthesis 2017; 49: 4461
- 17c López E, Borge J, López LA. Chem. Eur. J. 2017; 23: 3091
- 17d López E, González J, López LA. Adv. Synth. Catal. 2016; 358: 1428
- 17e Zhu C, Xu G, Sun J. Angew. Chem. Int. Ed. 2016; 55: 11867
- 17f Xi Y, Su Y, Yu Z, Dong B, McClain EJ, Lan Y, Shi X. Angew. Chem. Int. Ed. 2014; 53: 9817
- 17g Yu Z, Ma B, Chen M, Wu H.-H, Liu L, Zhang J. J. Am. Chem. Soc. 2014; 136: 6904
- 17h Cao Z.-Y, Wang X, Tan C, Zhao X.-L, Zhou J, Ding K. J. Am. Chem. Soc. 2013; 135: 8197
- 17i Briones JF, Davies HM. L. J. Am. Chem. Soc. 2012; 134: 11916
- 17j Jadhav AM, Pagar VV, Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 11809
- 17k Jadhav AM, Pagar VV, Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 11809
- 17l Rivilla I, Gómez-Emeterio BP, Fructos MR, Díaz-Requejo MM, Pérez PJ. Organometallics 2011; 30: 2855
- 17m Prieto A, Fructos MR, Mar Díaz-Requejo M, Pérez PJ, Pérez-Galán P, Delpont N, Echavarren AM. Tetrahedron 2009; 65: 1790
- 17n Fructos MR, Belderrain TR, de Frémont P, Scott NM, Díaz-Requejo NM, Pérez PJ. Angew. Chem. Int. Ed. 2005; 44: 5284
- 18 Liu Y, Zhang D, Zhou J, Liu C. J. Phys. Chem. A 2010; 114: 1664
- 19a Fehr C, Winter B, Magpantay I. Chem. Eur. J. 2009; 15: 9773
- 19b Fehr C, Galindo J. Angew. Chem. Int. Ed. 2006; 45: 2901
- 19c Fürstner A, Hannen P. Chem. Eur. J. 2006; 12: 3006
- 19d Shi X, Gorin DJ, Toste FD. J. Am. Chem. Soc. 2005; 127: 5802
- 19e Fürstner A, Hannen P. Chem. Commun. 2004; 2546
- 20a Zhang L. Acc. Chem. Res. 2014; 47: 877
- 20b Ye L, Cui L, Zhang G, Zhang L. J. Am. Chem. Soc. 2010; 132: 3258
- 20c Wu G, Zheng R, Nelson J, Zhang L. Adv. Synth. Catal. 2014; 356: 1229
- 20d Ji K, Zhang L. Org. Chem. Front. 2014; 1: 34
- 20e Ji K, Zhao Y, Zhang L. Angew. Chem. Int. Ed. 2013; 52: 6508
- 20f Luo Y, Ji K, Li Y, Zhang L. J. Am. Chem. Soc. 2012; 134: 17412
- 20g Lu B, Li C, Zhang L. J. Am. Chem. Soc. 2010; 132: 14070
- 20h Ghorpade S, Su M.-D, Liu R.-S. Angew. Chem. Int. Ed. 2013; 52: 4229
- 20i Vasu D, Hung H.-H, Bhunia S, Gawade SA, Das A, Liu R.-S. Angew. Chem. Int. Ed. 2011; 50: 6911
- 20j Qian D, Zhang J. Chem. Commun. 2012; 48: 7082
- 20k Davies PW, Cremonesi A, Martin N. Chem. Commun. 2011; 47: 379
- 20l Henrion G, Chavas TE. J, Le Goff X, Gagosz F. Angew. Chem. Int. Ed. 2013; 52: 6277
- 20m Xu M, Ren T.-T, Li C.-Y. Org. Lett. 2012; 14: 4902
- 20n Wang T, Shi S, Hansmann MM, Rettenmeier E, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2014; 53: 3715
- 20o Shi S, Wang T, Yang W, Rudolph M, Hashmi AS. K. Chem. Eur. J. 2013; 19: 6576
- 20p Sun N, Chen M, Liu Y. J. Org. Chem. 2014; 79: 4055
- 20q Bhunia S, Ghorpade S, Huple DB, Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 2939
- 20r Chen M, Chen Y, Sun N, Zhao J, Liu Y, Li Y. Angew. Chem. Int. Ed. 2015; 54: 1200
- 21 Wang Y, Zheng Z, Zhang L. J. Am. Chem. Soc. 2015; 137: 5316
- 22a Sulikowski GA, Lee S. Tetrahedron Lett. 1999; 40: 8035
- 22b Wang P, Adams J. J. Am. Chem. Soc. 1994; 116: 3296
- 22c Davies HM. L, Hansen T, Churchill MR. J. Am. Chem. Soc. 2000; 122: 3063
- 22d Ishii S, Zhao S, Helquist P. J. Am. Chem. Soc. 2000; 122: 5897
- 22e Mbuvi HM, Woo LK. Organometallics 2008; 27: 637
- 23 Zheng Z, Wang Y, Ma X, Li Y, Zhang L. Angew. Chem. Int. Ed. 2020; 59: 17398
- 24 Zheng Y, Jiang J, Li Y, Wei Y, Zhang J, Hu J, Ke Z, Xu X, Zhang L. Angew. Chem. Int. Ed. 2023; 62: e202218175
- 25 Liu Y, Puig de la Bellacasa R, Li B, Cuenca AB, Liu S.-Y. J. Am. Chem. Soc. 2021; 143: 14059
- 26 Zheng Y, Zhang J, Cheng X, Xu X, Zhang L. Angew. Chem. Int. Ed. 2019; 58: 5241
- 27a Weber L, Wartig HB, Stammler H.-G, Neumann B. Organometallics 2001; 20: 5248
- 27b Ansorge A, Brauer DJ, Bürger H, Hagen T, Pawelke G. Angew. Chem., Int. Ed. Engl. 1993; 32: 384
- 27c Sotiropoulos J.-M, Baceiredo A, von Locquenghien KH, Dahan F, Bertrand G. Angew. Chem., Int. Ed. Engl. 1991; 30: 1154
- 27d Arthur MP, Baceiredo A, Bertrand G. J. Am. Chem. Soc. 1991; 113: 5856
- 27e Schöllkopf U, Bánhidai B, Frasnelli H, Meyer R, Beckhaus H. Justus Liebigs Ann. Chem. 1974; 1767
- 28 Li D.-Y, Wei Y, Marek I, Tang X, Shi M. Chem. Sci. 2015; 6: 5519
- 29 Li D.-Y, Fang W, Wei Y, Shi M. Chem. Eur. J. 2016; 22: 18080
- 30a Mato M, García-Morales C, Echavarren AM. ChemCatChem 2019; 11: 53
- 30b Mato M, Herlé B, Echavarren AM. Org. Lett. 2018; 20: 4341
- 30c Herlé B, Holstein PM, Echavarren AM. ACS Catal. 2017; 7: 3668
- 30d Yin X, Mato M, Echavarren AM. Angew. Chem. Int. Ed. 2017; 56: 14591
- 30e Wang Y, Muratore ME, Rong Z, Echavarren AM. Angew. Chem. Int. Ed. 2014; 53: 14022
- 30f Wang Y, McGonical PR, Herlé B, Besora M, Echavarren AM. J. Am. Chem. Soc. 2014; 136: 801
- 30g Solorio-Alvarado CR, Wang Y, Echavarren AM. J. Am. Chem. Soc. 2011; 133: 11952
- 31a Sarria Toro JM, García-Morales C, Raducan M, Smirnova ES, Echavarren AM. Angew. Chem. Int. Ed. 2017; 56: 1859
- 31b García-Morales C, Pei X.-L, Sarria Toro JM, Echavarren AM. Angew. Chem. Int. Ed. 2019; 58: 3957
- 32 Yin X, Zuccarello G, García-Morales C, Echavarren AM. Chem. Eur. J. 2019; 25: 9485
- 33 For a seminal contribution, see: Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556
- 34 For a recent review on the reactivity of 1-haloalkynes under gold-catalysis, see: Miguélez R, Arto O, Rodríguez-Arias C, González JM, Barrio P. ChemCatChem 2024; in press DOI: 10.1002/cctc.202400617.
- 35a ref. 12d
- 35b Hashmi AS. K, Braun I, Rudolph M, Rominger F. Organometallics 2012; 31: 644
- 37a Klein JE. M. N, Knizia G, Nunes dos Santos Comprido L, Kästner J, Hashmi AS. K. Chem. Eur. J. 2017; 23: 16097
- 37b Vilhelmse MH, Hashmi AS. K. Chem. Eur. J. 2014; 20: 1901
- 38 Tokimizu Y, Wieteck M, Rudolph M, Oishi S, Fujii N, Hashmi AS. K, Ohno H. Org. Lett. 2015; 17: 604
- 39 Tsupova S, Hansmann MM, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2016; 22: 16286
- 40 Tsupova S, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2017; 23: 12259
- 41a Allegue D, Santamaría J, Ballesteros A. Adv. Synth. Catal. 2021; 363: 5272
- 41b Suárez-Rodríguez T, Suárez-Sobrino ÁL, Ballesteros A. Chem. Eur. J. 2021; 27: 7154
- 41c Allegue D, González J, Fernández S, Santamaría J, Ballesteros A. Adv. Synth. Catal. 2019; 361: 758
- 41d González J, Santamaría J, Suárez-Sobrino ÁL, Ballesteros A. Adv. Synth. Catal. 2016; 358: 1398
- 41e Adcock HV, Chatzopoulou E, Davies PW. Angew. Chem. Int. Ed. 2015; 54: 15525
- 41f Tokimizu Y, Oishi S, Fujii N, Ohno H. Org. Lett. 2014; 16: 3138
- 41g Jaimes MC. B, Weingand V, Rominger F, Hashmi AS. K. Chem. Eur. J. 2013; 19: 12504
- 41h Rettenmeier E, Schuster AM, Rudolph M, Rominger F, Gade CA, Hashmi AS. K. Angew. Chem. Int. Ed. 2013; 52: 5880
- 41i Hashmi AS. K, Rudolph M, Bats JW, Frey W, Rominger R, Oeser T. Chem. Eur. J. 2008; 14: 6672
- 42a Wieteck M, Tokimizu Y, Rudolph M, Rominger F, Ohno H, Fujii N, Hashmi AS. K. Chem. Eur. J. 2014; 20: 16331
- 42b Hansmann MM, Tsupova S, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2014; 20: 2215
- 42c Hansmann MM, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2013; 52: 2593
- 42d Wang Y, Yepremyan A, Ghorai S, Todd R, Aue DH, Zhang L. Angew. Chem. Int. Ed. 2013; 52: 7795
- 42e Hashmi AS. K, Wieteck M, Braun I, Nösel P, Jongbloed L, Rudolph M, Rominger F. Adv. Synth. Catal. 2012; 354: 555
- 43 For a recent review focused on the generation of gold vinylidene intermediates from 1-haloalkynes by [1,2]-halogen shift, see: Fernández-Canelas P, Barrio P, González JM. Tetrahedron Lett. 2022; 99: 153857
- 44a Morán-Poladura P, Rubio E, González JM. Beilstein J. Org. Chem. 2013; 9: 2120
- 44b Morán-Poladura P, Suárez-Pantiga S, Piedrafita M, Rubio E, González JM. J. Organomet. Chem. 2011; 696: 12
- 45 Fernández-Canelas P, Rubio E, González JM. Org. Lett. 2019; 21: 6566
- 46 Fernández-Canelas P, Miguélez R, Rubio E, González JM, Barrio P. Chem. Commun. 2022; 58: 9250
- 47 Morán-Poladura P, Rubio E, González JM. Angew. Chem. Int. Ed. 2015; 54: 3052
- 48 Wang Y, Zarca M, Gong L.-Z, Zhang L. J. Am. Chem. Soc. 2016; 138: 7516
- 49 Jaroschik F, Simonneau A, Lemière G, Cariou K, Agenet N, Amouri H, Aubert C, Goddard J.-P, Lesage D, Malacria M, Gimbert Y, Gandon V, Fensterbank L. ACS Catal. 2016; 6: 5146
- 50a Aubert C, Fensterbank L, Garcia P, Malacria M, Simonneau A. Chem. Rev. 2011; 111: 1954
- 50b Lemière G, Gandon V, Agenet N, Goddard J.-P, deKozak A, Aubert C, Fensterbank L, Malacria M. Angew. Chem. Int. Ed. 2006; 45: 7596
- 51a McQuaid KM, Long JZ, Sames D. Org. Lett. 2009; 11: 2972
- 51b McQuaid KM, Sames D. J. Am. Chem. Soc. 2009; 131: 402
- 51c Pastine SJ, Sames D. J. Am. Chem. Soc. 2005; 127: 12180
- 51d Noguchi M, Yamada H, Sunagawa T. J. Chem. Soc., Perkin Trans. 1 1998; 3327
- 51e Nijhuis WH. N, Verboom W, El-Fadl AA, Harkema S, Reinhoudt DN. J. Org. Chem. 1989; 54: 199
- 51f Nijhuis WH. N, Verboom W, Reinhoudt DN. J. Am. Chem. Soc. 1987; 109: 3136
- 52 For a report of homologous cyclization of an allyl gold intermediate, reporting a single example of C(sp3)–H bond activation, see: Ji K, Liu X, Du B, Yang F, Gao J. Chem. Commun. 2015; 51: 10318
- 53 Nahide PD, Jiménez-Halla JO. C, Wrobel K, Solorio-Alvarado CR, Ortiz Alvarado R, Yahuaca-Juárez B. Org. Biomol. Chem. 2018; 16: 7330
- 54a Wang Y, Liao W, Huang G, Xia Y, Yu Z.-X. J. Org. Chem. 2014; 79: 5684
- 54b Tobisu M, Nakai H, Chatani N. J. Org. Chem. 2009; 74: 5471
- 54c Yang S, Li Z, Jian X, He C. Angew. Chem. Int. Ed. 2009; 48: 3999
- 55a Rettenmeier E, Hansmann MM, Ahrens A, Rübenacker K, Saboo T, Massholder J, Meier C, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2015; 21: 14401
- 55b González-Gómez Á, Domínguez G, Pérez-Castells J. Eur. J. Org. Chem. 2009; 5057
- 55c Cheong PH, Morganelli P, Luzung MR, Houk KN, Toste FD. J. Am. Chem. Soc. 2008; 130: 4517
- 55d Yang C.-Y, Lin G.-Y, Liao H.-Y, Datta S, Liu R.-S. J. Org. Chem. 2008; 73: 4907
- 55e Lin G.-Y, Yang C.-Y, Liu R.-S. J. Org. Chem. 2007; 72: 6753
- 56 Ikeuchi T, Inuki S, Oishi S, Ohno H. Angew. Chem. Int. Ed. 2019; 58: 7792
- 57a Sahani RL, Liu R.-S. Adv. Organomet. Chem. 2020; 73: 195
- 57b Tian X, Song L, Hashmi AS. K. Chem. Eur. J. 2020; 26: 3197
- 57c Zhao X, Rudolph M, Asiri AM, Hashmi AS. K. Front. Chem. 2020; 14: 317
- 57d Aguilar E, Santamaría J. Org. Chem. Front. 2019; 6: 1513
- 57e Li L, Tan T.-D, Zhang Y.-Q, Liu X, Ye L.-W. Org. Biomol. Chem. 2017; 15: 8483
- 57f Davies PW, Garzón M. Asian J. Org. Chem. 2015; 4: 694
- 58a Wetzel A, Gagosz F. Angew. Chem. Int. Ed. 2011; 50: 7354
- 58b Lu B, Luo Y, Liu L, Ye L, Wang Y, Zhang L. Angew. Chem. Int. Ed. 2011; 50: 8358
- 58c Gorin DJ, Davis NR, Toste FD. J. Am. Chem. Soc. 2005; 127: 11260
- 59 Greiner LC, Arichi N, Inuki S, Ohno H. Angew. Chem. Int. Ed. 2023; 62: e202213653
- 60a Chen YB, Liu LG, Wang Z.-Q, Chang R, Lu X, Zhou B, Ye L.-W. Nat. Commun. 2024; 15: 2232
- 60b Mackenroth AV, Ahrens A, Wunsch JF, Berger R, Rominger F, Rudolph M, Hashmi AS. K. Adv. Synth. Catal. 2024; 366: 1331
- 60c Tsuno H, Shen J, Komatsu H, Arichi N, Inuki S, Ohno H. Angew. Chem. Int. Ed. 2023; 62: e202307532
- 60d Nistanaki SK, Williams CG, Wigman B, Wong JJ, Haas BC, Popov S, Werth J, Sigman MS, Houk KN, Nelson HM. Science 2022; 378: 1085
- 60e Corcoran JC, Guo R, Xia Y, Wang Y.-M. Chem. Commun. 2022; 58: 11523
- 60f Wigman B, Popov S, Bagdasarian AL, Shao B, Benton TR, Williams CG, Fisher SP, Lavallo V, Houk KN, Nelson HM. J. Am. Chem. Soc. 2019; 141: 9140
- 61 Cai P.-J, Wang Y, Liu C.-H, Yu Z.-X. Org. Lett. 2014; 16: 5898
- 62 Wang Y, Cai P.-J, Yu Z.-X. J. Am. Chem. Soc. 2020; 142: 2777
- 63a Cao Z, Gagosz F. Angew. Chem. Int. Ed. 2013; 52: 9014
- 63b Rao W, Sally, Berry SN, Chan PW. H. Chem. Eur. J. 2014; 20: 13174
- 63c Onizawa Y, Hara M, Hashimoto T, Kusama H, Iwasawa N. Chem. Eur. J. 2010; 16: 10785
- 63d Kim SY, Park Y, Chung YK. Angew. Chem. Int. Ed. 2010; 49: 415
- 63e Kusama H, Onizawa Y, Iwasawa N. J. Am. Chem. Soc. 2006; 128: 16500
- 64a Gorin DJ, Watson ID. G, Toste FD. J. Am. Chem. Soc. 2008; 130: 3736
- 64b Ohe K, Yokoi T, Miki K, Nishino F, Uemura S. J. Am. Chem. Soc. 2002; 124: 526
- 64c Dolbier WR. Jr, Garza OT, Al-Sader BH. J. Am. Chem. Soc. 1975; 97: 5038
- 65 Zheng Z, Zhang L. Org. Chem. Front. 2015; 2: 1556
- 66a Li L, Shu C, Zhou B, Yu Y.-F, Xiao X.-Y, Ye L.-W. Chem. Sci. 2014; 5: 4057
- 66b Dateer RB, Pati K, Liu R.-S. Chem. Commun. 2012; 48: 7200
- 66c Li C.-W, Lin G.-Y, Liu R.-S. Chem. Eur. J. 2010; 16: 5803
- 67a Bucher J, Wurm T, Farshadfar K, Schukin M, Uzunidis G, Rudolph M, Rominger F, Ariafard A, Hashmi AS. K. Adv. Synth. Catal. 2023; 365: 3320
- 67b Ahrens A, Schwarz J, Lustosa DM, Pourkaveh R, Hoffmann M, Rominger F, Rudolph M, Dreuw A, Hashmi AS. K. Chem. Eur. J. 2020; 26: 5280
- 67c Claus V, Molinari L, Büllmann S, Thusek J, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2019; 25: 9385
- 67d Plajer AJ, Ahrens L, Wieteck M, Lustosa DM, Babaahmadi R, Yates B, Ariafard A, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2018; 24: 10766
- 67e Greisch J.-F, Weis P, Brendle K, Kappes MM, Haler JR. N, Far J, De Pauw E, Albers C, Bay S, Wurm T, Rudolph M, Schulmeister J, Hashmi AS. K. Organometallics 2018; 37: 1493
- 67f Bucher J, Stößer T, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2015; 54: 1666
- 67g Larsen MH, Houk KN, Hashmi AS. K. J. Am. Chem. Soc. 2015; 137: 10668
- 67h Yu C, Chen B, Zhou T, Tian Q, Zhang G. Angew. Chem. Int. Ed. 2015; 54: 10903
- 67i Hashmi AS. K, Lauterbach T, Nösel P, Vilhelmsen MH, Rudolph M, Rominger F. Chem. Eur. J. 2013; 19: 1058
- 67j Hashmi AS. K, Wieteck M, Braun I, Rudolph M, Rominger F. Angew. Chem. Int. Ed. 2012; 51: 10633
- 68 Wurm T, Bucher J, Duckworth S, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2017; 56: 3364
- 69 Wurm T, Bucher J, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2017; 359: 1637
- 70a Zhao F, Abdellaoui M, Hagui W, Ballarin-Marion M, Berthet J, Corcé V, Delbaere S, Dossmann H, Espagne A, Forté J, Jullien L, Le Saux T, Mouriès-Mansuy V, Ollivier C, Fensterbank L. Nat. Commun. 2022; 13: 2295
- 70b Wu J, Wei C, Zhao F, Du W, Geng Z, Xia Z. J. Org. Chem. 2022; 87: 14374
- 70c Wei C, Wu J, Zhang L, Xia Z. Org. Lett. 2022; 24: 4689
- 70d Wu ZZ, Adak T, Dietl MC, Wang T, Hu C, Shi H, Krämer P, Rudolph M, Rominger F, Hashmi AS. K. Org. Lett. 2022; 24: 4349
- 70e Sarmiento JT, Cárcel M, Ramírez de Arellano C, Varea T, Asensio G, Olmos A. J. Org. Chem. 2022; 87: 3114
- 70f Kreuzahler M, Haberhauer G. Angew. Chem. Int. Ed. 2020; 59: 9433
- 70g García-Fernández PD, Iglesias-Sigüenza J, Rivero-Jerez PS, Díez E, Gómez-Bengoa E, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2020; 142: 16082
- 70h Kreuzahler M, Haberhauer G. Angew. Chem. Int. Ed. 2020; 59: 17739
- 70i de Orbe ME, Zanini M, Quinonero O, Echavarren AM. ACS Catal. 2019; 9: 7817
- 70j Kreuzahler M, Daniels A, Wölper C, Haberhauer G. J. Am. Chem. Soc. 2019; 141: 1337
- 70k Kreuzahler M, Haberhauer G. J. Org. Chem. 2019; 84: 8210
- 70l Bai Y.-B, Luo Z, Wang Y, Gao J.-M, Zhang L. J. Am. Chem. Soc. 2018; 140: 5860
- 71 Miguélez R, Semleit N, Rodríguez-Arias C, Mykhailiuk P, González JM, Haberhauer G, Barrio P. Angew. Chem. Int. Ed. 2023; 62: e202305296
- 72 For a recent review on the synthesis of the cyclopentene core, see: Miguélez R, Barrio P, González JM. Chem. Rec. 2023; 23: e202300254
- 73 For a synthetic application of the obtained 1-bromocyclopentene derivatives, see: Miguélez R, Arto O, Rodríguez-Arias C, del Blanco A, Barrio P, González JM. Eur. J. Org. Chem. 2024; 27: e202301274
- 74 Miguélez R, Arto O, Semleit N, Haberhauer G, Barrio P. Adv. Synth. Catal. 2024; 366: 780
- 75 Recently, a propargyl C–H functionalization with the intermediacy of a gold allenylidene has been disclosed: Wei Y, Jiang J, Jing Y, Ke Z, Zhang L. Angew. Chem. Int. Ed. 2024; 63: e202402286
For some leading seminal contributions, see:
For selected early examples of heterogenous gold-catalysis, see:
For selected recent reviews, see:
For selected reviews on C–H bond functionalization, see:
For selected recent reviews on different aspects of the impact of chemistry on sustainability, see:
For reviews covering fundamental aspects of gold carbene chemistry, see:
For reviews covering gold vinylidene chemistry, see:
For selected contributions on gold-carbene C(sp3)–H insertion processes previous to the timespan covered in this review, see:
For selected contributions on gold-vinylidene C(sp3)–H insertion processes previous to the timespan covered in this review, see:
For selected contributions C(sp3)–H functionalization processes comprising a hydride shift previous to the timespan covered in this review, see:
For pioneering examples of the intermediacy of vinyl cation species in so-called C–H 1,1-insertion processes under non-gold-catalyzed settings, see:
For examples of gold-carbene species generated by the decomposition of diazo compounds, see:
For an early review, see:
For selected early examples, see:
For examples of α-boryl diazo compounds, see:
The same authors also reported the on-demand generation of gold carbene species in solution from stable gold carbenoids:
The thus generated gold carbenes were shown to undergo C(sp3)–H bond insertion, but only an intermolecular example was reported:
For seminal contributions, see:
For theoretical studies of the gold-catalyzed dual activation of alkynes using DFT calculations, see:
For selected reports on gold-catalyzed reactions of ynamides, see:
For a review on transition-metal-catalyzed cycloisomerizations of enynes, see:
For a selected previous report from the same group on the gold-catalyzed cycloisomerization of enynes, see:
See, for instance:
For selected reviews on α-imino carbene complexes, see:
For pioneering examples on the use of organic azides as precursors of gold α-imino carbene complexes, see:
For selected recent examples, see:
For Cope rearrangement of cis-alkenylalkynylcyclopropanes, see:
For recent examples, see: