Synthesis 2023; 55(08): 1198-1206
DOI: 10.1055/a-1984-9689
paper

Chemoenzymatic Enantioselective Synthesis of the Hancock Alkaloids (S)- and (R)-Galipeine, (S)-Cuspareine, (S)-Galipinine, and (S)-Angustureine

Nilton Gonçalves da Cruz
a   Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
,
Amanda Silva de Miranda
a   Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
,
Henriete da Silva Vieira
a   Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
,
Markus Kohlhoff
b   Chemistry of Bioactive Natural Products, René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, MG, 30190-002, Brazil
,
João Guilherme Pereira Mendonça
c   Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
,
Marisa Alves Nogueira Diaz
c   Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
,
a   Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
› Author Affiliations
We are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brazilian Federal Agency for Support and Evaluation of Graduate Education, CAPES) for granting a master’s scholarship to N.G.C. We are also grateful for the financial support provided by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Minas Gerais Research Foundation, FAPEMIG).


Abstract

The enantioselective synthesis of the Hancock 1,2,3,4-tetrahydroquinoline alkaloids (S)-galipeine, (S)-cuspareine, (S)-galipinine, and (S)-angustureine and the nonnatural enantiomer (R)-galipeine is described herein. The target compounds were obtained in five steps from a racemic quinaldinic acid derived α-amino ester in overall yields of 21.2% to 37.5%. The synthetic route comprised two key steps: an enzymatic kinetic resolution to control the C-2 stereocenter, affording (R)- and (S)-α-amino esters as key chiral intermediates with 94% and 72% ee, respectively, and Wittig olefination of (R)- and (S)-α-amino aldehyde synthons with the corresponding phosphonium salts using a phase-transfer system (t-BuOH/CH2Cl2), thereby allowing the introduction of alkyl substituents at C-2. Finally, the enantioselective synthesis was concluded with the catalytic hydrogenation of olefinic bonds on the Wittig adducts to furnish the target Hancock alkaloids, including (R)-galipeine, whose synthesis is described here for the first time.

Supporting Information



Publication History

Received: 08 October 2022

Accepted: 23 November 2022

Accepted Manuscript online:
23 November 2022

Article published online:
03 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Davies SG, Fletcher AM, Houlsby IT. T, Roberts PM, Thomson JE, Zimmer D. J. Nat. Prod. 2018; 81: 2731
  • 2 Davies SG, Fletcher AM, Houlsby IT. T, Roberts PM, Thomson JE. J. Org. Chem. 2017; 82: 10673
  • 3 Jacquemond-Collet I, Hannedouche S, Fabre N, Fourasté I, Moulis C. Phytochemistry 1999; 51: 1167
  • 4 Jacquemond-Collet I, Benoit-Vical F, Mustofa, Valentin A, Stanislas E, Mallié M, Fourasté I. Planta Med. 2002; 68: 68
  • 5 Mester I. Fitoterapia 1973; 44: 123
  • 6 Hays I. The American Cyclopedia of Practical Medicine and Surgery: A Digest of Medical Literature, Vol. 2. Carey, Lea, & Blanchard; Philadelphia: 1836: 2-3
  • 7 Rakotoson JH, Fabre N, Jacquemond-Collet I, Hannedouche S, Fourasté I, Moulis C. Planta Med. 1998; 64: 762
  • 8 Muñoz GD, Dudley GB. Org. Prep. Proced. Int. 2015; 47: 179
  • 9 Chen F, Surkus A.-E, He L, Pohl M.-M, Radnik J, Topf C, Junge K, Beller M. J. Am. Chem. Soc. 2015; 137: 11718
  • 10 Chacko S, Ramapanicker RJ. Heterocycl. Chem. 2015; 52: 1902
  • 11 Pappoppula M, Cardoso FS. P, Garrett BO, Aponick A. Angew. Chem. Int. Ed. 2015; 54: 15202
  • 12 Saito K, Miyashita H, Akiyama T. Chem. Commun. 2015; 51: 16648
  • 13 Garg Y, Gahalawat S, Pandey SK. RSC Adv. 2015; 5: 38846
  • 14 Wang Y, Liu Y, Zhang D, Wei H, Shi M, Wang F. Angew. Chem. Int. Ed. 2016; 55: 3776
  • 15 Crisenza GE. M, Dauncey EM, Bower JF. Org. Biomol. Chem. 2016; 14: 5820
  • 16 He Z, Liu H, Qian Q, Lu L, Guo W, Zhang L, Han B. Sci. China: Chem. 2017; 60: 927
  • 17 Diaz-Muñoz G, Isidoro RG, Miranda IL, Nunes de Souza Dias G, Diaz MA. N. Tetrahedron Lett. 2017; 58: 3311
  • 18 Davies SG, Fletcher AM, Roberts PM, Thomson JE. Eur. J. Org. Chem. 2019; 5093
  • 19 Wang W.-B, Lu S.-M, Yang P.-Y, Han X.-W, Zhou Y.-G. J. Am. Chem. Soc. 2003; 125: 10536
  • 20 Lu S.-M, Wang Y.-Q, Han X.-W, Zhou Y.-G. Angew. Chem. Int. Ed. 2006; 45: 2260
  • 21 Wang Z.-J, Zhou H.-F, Wang T.-L, He Y.-M, Fan Q.-H. Green Chem. 2009; 11: 767
  • 22 Wang T, Zhuo L.-G, Li Z, Chen F, Ding Z, He Y, Fan Q.-H, Xiang J, Yu Z.-X, Chan AS. C. J. Am. Chem. Soc. 2011; 133: 9878
  • 23 Tang W.-J, Zhu S.-F, Xu L.-J, Zhou Q.-L, Fan Q.-H, Zhou H.-F, Lam K, Chan AS. C. Chem. Commun. 2007; 613
  • 24 Wang Z.-J, Deng G.-J, Li Y, He Y.-M, Tang W.-J, Fan Q.-H. Org. Lett. 2007; 9: 1243
  • 25 Deport C, Buchotte M, Abecassis K, Tadaoka H, Ayad T, Oshima T, Genet J.-P, Mashima K, Ratovelomanana-Vidal V. Synlett 2007; 2743
  • 26 Wang D.-W, Zeng W, Zhou Y.-G. Tetrahedron: Asymmetry 2007; 18: 1103
  • 27 Jahjah M, Alame M, Pellet-Rostaing S, Lemaire M. Tetrahedron: Asymmetry 2007; 18: 2305
  • 28 Wang X.-B, Zhou Y.-G. J. Org. Chem. 2008; 73: 5640
  • 29 Gou F.-R, Li W, Zhang X, Liang Y.-M. Adv. Synth. Catal. 2010; 352: 2441
  • 30 Satyanarayana G, Pflästerer DD, Helmchen G. Eur. J. Org. Chem. 2011; 6877
  • 31 Ye K.-Y, He H, Liu W.-B, Dai L.-X, Helmchen G, You S.-L. J. Am. Chem. Soc. 2011; 133: 19006
  • 32 Bentley SA, Davies SG, Lee JA, Roberts PM, Thomson JE. Org. Lett. 2011; 13: 2544
  • 33 Sirvent JA, Foubelo F, Yus M. Heterocycles 2014; 88: 1163
  • 34 Sirvent JA, Foubelo F, Yus M. J. Org. Chem. 2014; 79: 1356
  • 35 Taylor LL, Goldberg FW, Hii KK. Org. Biomol. Chem. 2012; 10: 4424
  • 36 Tummatorn J, Diaz Muñoz G, Dudley GB. Tetrahedron Lett. 2013; 54: 1312
  • 37 Diaz G, Diaz MA. N, Reis MA. J. Braz. Chem. Soc. 2013; 24: 1497
  • 38 Katayama S, Ae N, Nagata R. Tetrahedron: Asymmetry 1998; 9: 4295
  • 39 This discrepancy in reactivity toward the enzymatic reaction might be related to differences in their interactions with the active site of the enzyme and also to the possibility of intramolecular hydrogen bonding between the carbonyl group and the hydrogen of the NH group in compound 14, which is absent in its N-methylated derivative. These hypotheses, however, are still to be corroborated by further studies.
  • 40 The temperature at which the specific rotation value was determined was not specified.
  • 41 Theeraladanon C, Arisawa M, Nakagawa M, Nishida A. Tetrahedron: Asymmetry 2005; 16: 827
  • 42 Lin X.-F, Li Y, Ma D.-W. Chin. J. Chem. 2004; 22: 932