Synthesis 2022; 54(03): 763-769 DOI: 10.1055/a-1648-7154
Copper-Catalyzed Regioselective Sila-acylation and Sila-imination of Allenes Using Esters and Nitriles
Katsushi Suda
,
Yuki Matsuda
,
Tatsuya Yamaguchi
,
This work was supported by the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific Research B (KAKENHI) (Grant No. 20H02738) from MEXT, Japan.
Abstract
The sila-acylation of allenes is performed in the presence of a copper catalyst using PhMe2 Si-B(pin) and esters as the silyl and acyl sources, respectively. β-Silyl-β,γ-unsaturated ketones are obtained regioselectively in good to high yields. The sila-imination of allenes is also achieved using nitriles as electrophiles. Exposure of the reaction mixture to air results in the production of cyclic silyl peroxides.
Key words
allenes -
copper -
esters -
nitriles -
silylboranes
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1648-7154.
Supporting Information
Publication History
Received: 28 August 2021
Accepted after revision: 20 September 2021
Accepted Manuscript online: 20 September 2021
Article published online: 19 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Modern Allene Chemistry
.
Krause K,
Hashmi AS. K.
Wiley-VCH; Weinheim: 2004
1b
Ma S.
Chem. Rev. 2005; 105: 2829
1c
Jeganmohan M,
Cheng C.-H.
Chem. Commun. 2008; 3101
1d
Yu S,
Ma S.
Angew. Chem. Int. Ed. 2012; 51: 3074
2a
Colvin EW.
Silicon in Organic Synthesis. In Butterworths Monographs in Chemistry and Chemical Engineering. Butterworths; London: 1981: 44-82
2b
Colvin EW.
In
Silicon Reagents in Organic Synthesis
. Academic Press; London: 1988: 7-19
2c
Langkopf E,
Schinzer D.
Chem. Rev. 1995; 95: 1375
2d
Blumenkopf TA,
Overman LE.
Chem. Rev. 1986; 86: 857
2e
Fleming I,
Dunogues J,
Smithers R.
Org. React. 1989; 37: 57
3a
Kleeberg C,
Cheung MS,
Lin Z,
Marder TB.
J. Am. Chem. Soc. 2011; 133: 19060
3b
Plotzitzka J,
Kleeberg C.
Inorg. Chem. 2016; 55: 4813
4a
Ohmura T,
Suginome M.
Bull. Chem. Soc. Jpn. 2009; 82: 29
4b
Oestreich M,
Hartmann E,
Mewald M.
Chem. Rev. 2013; 113: 402
4c
Feng J.-J,
Mao W,
Zhang L,
Oestreich M.
Chem. Soc. Rev. 2021; 50: 2010
5a
Fujihara T,
Tsuji Y.
Synthesis 2018; 50: 1737
5b
Pulis AP,
Yeung K,
Procter DJ.
Chem. Sci. 2017; 8: 5240
6a
Tani Y,
Fujihara T,
Terao J,
Tsuji Y.
J. Am. Chem. Soc. 2014; 136: 17706
6b
Tani Y,
Yamaguchi T,
Fujihara T,
Terao J,
Tsuji Y.
Chem. Lett. 2015; 44: 271
7a
He Z.-T,
Tang X.-Q,
Xie L.-B,
Cheng M,
Tian P,
Lin G.-Q.
Angew. Chem. Int. Ed. 2015; 54: 14815
7b
Cuadrado P,
González AM,
Pulido FJ,
Fleming I.
Tetrahedron Lett. 1988; 29: 1825
8a
Rae J,
Hu YC,
Procter DJ.
Chem. Eur. J. 2014; 20: 13143
8b
Yeung K,
Ruscoe RE,
Rae J,
Pulis AP,
Procter DJ.
Angew. Chem. Int. Ed. 2016; 55: 11912
8c
Rae J,
Yeung K,
McDouall JJ,
Procter DJ.
Angew. Chem. Int. Ed. 2016; 55: 1102
8d
Barbero A,
Blanco Y,
Pulido FJ.
J. Org. Chem. 2005; 70: 6876
9
Larock RC.
Comprehensive Organic Transformations , 2nd ed. Wiley-VCH; Weinheim: 1999
10
Fujihara T,
Sawada A,
Yamaguchi T,
Tani Y,
Terao J,
Tsuji Y.
Angew. Chem. Int. Ed. 2017; 56: 1539
11
Kanayama K,
Sawada A,
Suda K,
Fujihara T.
J. Org. Chem. 2021; 86: 9869
12a
Matsuda Y,
Tsuji Y,
Fujihara T.
Chem. Commun. 2020; 56: 4648
12b
del Pozo J,
Zhang S,
Romiti F,
Xu S,
Conger RP,
Hoveyda AH.
J. Am. Chem. Soc. 2020; 142: 18200
12c
Zhang S,
del Pozo J,
Romiti F,
Mu Y,
Torker S,
Hoveyda AH.
Science 2019; 364: 45
13a
Sawwan N,
Greer A.
Chem. Rev. 2007; 107: 3247
13b
Davies AG.
Tetrahedron 2007; 63: 10385
13c
Alexandrov YA.
J. Organomet. Chem. 1982; 238: 1
14a
Arzumanyan AV,
Novikov RA,
Terent’ev AO,
Platonov MM,
Lakhtin VG,
Arkhipov DE,
Korlyukov AA,
Chernyshev VV,
Fitch AN,
Zdvizhkov AT,
Krylov IB,
Tomilov YV,
Nikishin GI.
Organometallics 2014; 33: 2230
14b
Arzumanyan AV,
Terent’ev AO,
Novikov RA,
Lakhtin VG,
Chernyshev VV,
Fitch AN,
Nikishin GI.
Eur J. Org. Chem. 2014; 6877
15
Suginome M,
Matsuda T,
Ito Y.
Organometallics 2000; 19: 4647
16 See the Supporting Information for details.
17
Hatakeyama T,
Hashimoto T,
Kondo Y,
Fujiwara Y,
Seike H,
Takaya H,
Tamada T,
Ono T,
Nakamura M.
J. Am. Chem. Soc. 2010; 132: 10674
18
Sawada A,
Fujihara T,
Tsuji Y.
Adv. Synth. Catal. 2018; 360: 2621
19
Boreux A,
Indukuri K,
Gagosz F,
Riant O.
ACS Catal. 2017; 7: 8200
20
Cirriez V,
Rasson C,
Riant O.
Adv. Synth. Catal. 2013; 355: 3137
21
Shishido R,
Uesugi M,
Takahashi R,
Mita T,
Ishiyama T,
Kubota K,
Ito H.
J. Am. Chem. Soc. 2020; 142: 14125
22a
El-Sayed I,
Hatanaka Y,
Muguruma C,
Shimada S,
Tanaka M,
Koga N,
Mikami M.
J. Am. Chem. Soc. 1999; 121: 5095
22b
Yoder CH,
Smith WD,
Buckwalter BL,
Schaeffer CD. Jr,
Sullivan KJ,
Lehman MF.
J. Organomet. Chem. 1995; 429: 129
23
Fujihara T,
Tani Y,
Semba K,
Terao J,
Tsuji Y.
Angew. Chem. Int. Ed. 2012; 51: 11487
24
Pangborn AB,
Giardello MA,
Grubbs RH,
Rosen RK,
Timmers FJ.
Organometallics 1996; 15: 1518
25a
Tsuji J,
Sugiura T,
Minami I.
Synthesis 1987; 7: 603
25b
Kippo T,
Fukuyama T,
Ryu I.
Org. Lett. 2011; 13: 3864
26
Ben Halima T,
Zhang W,
Yalaoui I,
Hong X,
Yang Y.-F,
Houk KN,
Newman SG.
J. Am. Chem. Soc. 2017; 139: 1311