Synthesis 2022; 54(03): 763-769
DOI: 10.1055/a-1648-7154
paper

Copper-Catalyzed Regioselective Sila-acylation and Sila-imination of Allenes Using Esters and Nitriles

Katsushi Suda
,
Yuki Matsuda
,
Tatsuya Yamaguchi
,
This work was supported by the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific Research B (KAKENHI) (Grant No. 20H02738) from MEXT, Japan.


Abstract

The sila-acylation of allenes is performed in the presence of a copper catalyst using PhMe2Si-B(pin) and esters as the silyl and acyl sources, respectively. β-Silyl-β,γ-unsaturated ketones are obtained regioselectively in good to high yields. The sila-imination of allenes is also achieved using nitriles as electrophiles. Exposure of the reaction mixture to air results in the production of cyclic silyl peroxides.

Supporting Information



Publication History

Received: 28 August 2021

Accepted after revision: 20 September 2021

Accepted Manuscript online:
20 September 2021

Article published online:
19 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Colvin EW. Silicon in Organic Synthesis. In Butterworths Monographs in Chemistry and Chemical Engineering. Butterworths; London: 1981: 44-82
    • 2b Colvin EW. In Silicon Reagents in Organic Synthesis . Academic Press; London: 1988: 7-19
    • 2c Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
    • 2d Blumenkopf TA, Overman LE. Chem. Rev. 1986; 86: 857
    • 2e Fleming I, Dunogues J, Smithers R. Org. React. 1989; 37: 57
    • 3a Kleeberg C, Cheung MS, Lin Z, Marder TB. J. Am. Chem. Soc. 2011; 133: 19060
    • 3b Plotzitzka J, Kleeberg C. Inorg. Chem. 2016; 55: 4813
    • 4a Ohmura T, Suginome M. Bull. Chem. Soc. Jpn. 2009; 82: 29
    • 4b Oestreich M, Hartmann E, Mewald M. Chem. Rev. 2013; 113: 402
    • 4c Feng J.-J, Mao W, Zhang L, Oestreich M. Chem. Soc. Rev. 2021; 50: 2010
    • 6a Tani Y, Fujihara T, Terao J, Tsuji Y. J. Am. Chem. Soc. 2014; 136: 17706
    • 6b Tani Y, Yamaguchi T, Fujihara T, Terao J, Tsuji Y. Chem. Lett. 2015; 44: 271
    • 7a He Z.-T, Tang X.-Q, Xie L.-B, Cheng M, Tian P, Lin G.-Q. Angew. Chem. Int. Ed. 2015; 54: 14815
    • 7b Cuadrado P, González AM, Pulido FJ, Fleming I. Tetrahedron Lett. 1988; 29: 1825
    • 8a Rae J, Hu YC, Procter DJ. Chem. Eur. J. 2014; 20: 13143
    • 8b Yeung K, Ruscoe RE, Rae J, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 11912
    • 8c Rae J, Yeung K, McDouall JJ, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 1102
    • 8d Barbero A, Blanco Y, Pulido FJ. J. Org. Chem. 2005; 70: 6876
  • 9 Larock RC. Comprehensive Organic Transformations, 2nd ed. Wiley-VCH; Weinheim: 1999
  • 10 Fujihara T, Sawada A, Yamaguchi T, Tani Y, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2017; 56: 1539
  • 11 Kanayama K, Sawada A, Suda K, Fujihara T. J. Org. Chem. 2021; 86: 9869
    • 12a Matsuda Y, Tsuji Y, Fujihara T. Chem. Commun. 2020; 56: 4648
    • 12b del Pozo J, Zhang S, Romiti F, Xu S, Conger RP, Hoveyda AH. J. Am. Chem. Soc. 2020; 142: 18200
    • 12c Zhang S, del Pozo J, Romiti F, Mu Y, Torker S, Hoveyda AH. Science 2019; 364: 45
    • 13a Sawwan N, Greer A. Chem. Rev. 2007; 107: 3247
    • 13b Davies AG. Tetrahedron 2007; 63: 10385
    • 13c Alexandrov YA. J. Organomet. Chem. 1982; 238: 1
    • 14a Arzumanyan AV, Novikov RA, Terent’ev AO, Platonov MM, Lakhtin VG, Arkhipov DE, Korlyukov AA, Chernyshev VV, Fitch AN, Zdvizhkov AT, Krylov IB, Tomilov YV, Nikishin GI. Organometallics 2014; 33: 2230
    • 14b Arzumanyan AV, Terent’ev AO, Novikov RA, Lakhtin VG, Chernyshev VV, Fitch AN, Nikishin GI. Eur J. Org. Chem. 2014; 6877
  • 15 Suginome M, Matsuda T, Ito Y. Organometallics 2000; 19: 4647
  • 16 See the Supporting Information for details.
  • 17 Hatakeyama T, Hashimoto T, Kondo Y, Fujiwara Y, Seike H, Takaya H, Tamada T, Ono T, Nakamura M. J. Am. Chem. Soc. 2010; 132: 10674
  • 18 Sawada A, Fujihara T, Tsuji Y. Adv. Synth. Catal. 2018; 360: 2621
  • 19 Boreux A, Indukuri K, Gagosz F, Riant O. ACS Catal. 2017; 7: 8200
  • 20 Cirriez V, Rasson C, Riant O. Adv. Synth. Catal. 2013; 355: 3137
  • 21 Shishido R, Uesugi M, Takahashi R, Mita T, Ishiyama T, Kubota K, Ito H. J. Am. Chem. Soc. 2020; 142: 14125
    • 22a El-Sayed I, Hatanaka Y, Muguruma C, Shimada S, Tanaka M, Koga N, Mikami M. J. Am. Chem. Soc. 1999; 121: 5095
    • 22b Yoder CH, Smith WD, Buckwalter BL, Schaeffer CD. Jr, Sullivan KJ, Lehman MF. J. Organomet. Chem. 1995; 429: 129
  • 23 Fujihara T, Tani Y, Semba K, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2012; 51: 11487
  • 24 Pangborn AB, Giardello MA, Grubbs RH, Rosen RK, Timmers FJ. Organometallics 1996; 15: 1518
  • 26 Ben Halima T, Zhang W, Yalaoui I, Hong X, Yang Y.-F, Houk KN, Newman SG. J. Am. Chem. Soc. 2017; 139: 1311