Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(03): 763-769
DOI: 10.1055/a-1648-7154
DOI: 10.1055/a-1648-7154
paper
Copper-Catalyzed Regioselective Sila-acylation and Sila-imination of Allenes Using Esters and Nitriles
This work was supported by the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific Research B (KAKENHI) (Grant No. 20H02738) from MEXT, Japan.
Abstract
The sila-acylation of allenes is performed in the presence of a copper catalyst using PhMe2Si-B(pin) and esters as the silyl and acyl sources, respectively. β-Silyl-β,γ-unsaturated ketones are obtained regioselectively in good to high yields. The sila-imination of allenes is also achieved using nitriles as electrophiles. Exposure of the reaction mixture to air results in the production of cyclic silyl peroxides.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1648-7154.
- Supporting Information
Publication History
Received: 28 August 2021
Accepted after revision: 20 September 2021
Accepted Manuscript online:
20 September 2021
Article published online:
19 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Modern Allene Chemistry . Krause K, Hashmi AS. K. Wiley-VCH; Weinheim: 2004
- 1b Ma S. Chem. Rev. 2005; 105: 2829
- 1c Jeganmohan M, Cheng C.-H. Chem. Commun. 2008; 3101
- 1d Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
- 2a Colvin EW. Silicon in Organic Synthesis. In Butterworths Monographs in Chemistry and Chemical Engineering. Butterworths; London: 1981: 44-82
- 2b Colvin EW. In Silicon Reagents in Organic Synthesis . Academic Press; London: 1988: 7-19
- 2c Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
- 2d Blumenkopf TA, Overman LE. Chem. Rev. 1986; 86: 857
- 2e Fleming I, Dunogues J, Smithers R. Org. React. 1989; 37: 57
- 3a Kleeberg C, Cheung MS, Lin Z, Marder TB. J. Am. Chem. Soc. 2011; 133: 19060
- 3b Plotzitzka J, Kleeberg C. Inorg. Chem. 2016; 55: 4813
- 4a Ohmura T, Suginome M. Bull. Chem. Soc. Jpn. 2009; 82: 29
- 4b Oestreich M, Hartmann E, Mewald M. Chem. Rev. 2013; 113: 402
- 4c Feng J.-J, Mao W, Zhang L, Oestreich M. Chem. Soc. Rev. 2021; 50: 2010
- 5a Fujihara T, Tsuji Y. Synthesis 2018; 50: 1737
- 5b Pulis AP, Yeung K, Procter DJ. Chem. Sci. 2017; 8: 5240
- 6a Tani Y, Fujihara T, Terao J, Tsuji Y. J. Am. Chem. Soc. 2014; 136: 17706
- 6b Tani Y, Yamaguchi T, Fujihara T, Terao J, Tsuji Y. Chem. Lett. 2015; 44: 271
- 7a He Z.-T, Tang X.-Q, Xie L.-B, Cheng M, Tian P, Lin G.-Q. Angew. Chem. Int. Ed. 2015; 54: 14815
- 7b Cuadrado P, González AM, Pulido FJ, Fleming I. Tetrahedron Lett. 1988; 29: 1825
- 8a Rae J, Hu YC, Procter DJ. Chem. Eur. J. 2014; 20: 13143
- 8b Yeung K, Ruscoe RE, Rae J, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 11912
- 8c Rae J, Yeung K, McDouall JJ, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 1102
- 8d Barbero A, Blanco Y, Pulido FJ. J. Org. Chem. 2005; 70: 6876
- 9 Larock RC. Comprehensive Organic Transformations, 2nd ed. Wiley-VCH; Weinheim: 1999
- 10 Fujihara T, Sawada A, Yamaguchi T, Tani Y, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2017; 56: 1539
- 11 Kanayama K, Sawada A, Suda K, Fujihara T. J. Org. Chem. 2021; 86: 9869
- 12a Matsuda Y, Tsuji Y, Fujihara T. Chem. Commun. 2020; 56: 4648
- 12b del Pozo J, Zhang S, Romiti F, Xu S, Conger RP, Hoveyda AH. J. Am. Chem. Soc. 2020; 142: 18200
- 12c Zhang S, del Pozo J, Romiti F, Mu Y, Torker S, Hoveyda AH. Science 2019; 364: 45
- 13a Sawwan N, Greer A. Chem. Rev. 2007; 107: 3247
- 13b Davies AG. Tetrahedron 2007; 63: 10385
- 13c Alexandrov YA. J. Organomet. Chem. 1982; 238: 1
- 14a Arzumanyan AV, Novikov RA, Terent’ev AO, Platonov MM, Lakhtin VG, Arkhipov DE, Korlyukov AA, Chernyshev VV, Fitch AN, Zdvizhkov AT, Krylov IB, Tomilov YV, Nikishin GI. Organometallics 2014; 33: 2230
- 14b Arzumanyan AV, Terent’ev AO, Novikov RA, Lakhtin VG, Chernyshev VV, Fitch AN, Nikishin GI. Eur J. Org. Chem. 2014; 6877
- 15 Suginome M, Matsuda T, Ito Y. Organometallics 2000; 19: 4647
- 16 See the Supporting Information for details.
- 17 Hatakeyama T, Hashimoto T, Kondo Y, Fujiwara Y, Seike H, Takaya H, Tamada T, Ono T, Nakamura M. J. Am. Chem. Soc. 2010; 132: 10674
- 18 Sawada A, Fujihara T, Tsuji Y. Adv. Synth. Catal. 2018; 360: 2621
- 19 Boreux A, Indukuri K, Gagosz F, Riant O. ACS Catal. 2017; 7: 8200
- 20 Cirriez V, Rasson C, Riant O. Adv. Synth. Catal. 2013; 355: 3137
- 21 Shishido R, Uesugi M, Takahashi R, Mita T, Ishiyama T, Kubota K, Ito H. J. Am. Chem. Soc. 2020; 142: 14125
- 22a El-Sayed I, Hatanaka Y, Muguruma C, Shimada S, Tanaka M, Koga N, Mikami M. J. Am. Chem. Soc. 1999; 121: 5095
- 22b Yoder CH, Smith WD, Buckwalter BL, Schaeffer CD. Jr, Sullivan KJ, Lehman MF. J. Organomet. Chem. 1995; 429: 129
- 23 Fujihara T, Tani Y, Semba K, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2012; 51: 11487
- 24 Pangborn AB, Giardello MA, Grubbs RH, Rosen RK, Timmers FJ. Organometallics 1996; 15: 1518
- 25a Tsuji J, Sugiura T, Minami I. Synthesis 1987; 7: 603
- 25b Kippo T, Fukuyama T, Ryu I. Org. Lett. 2011; 13: 3864
- 26 Ben Halima T, Zhang W, Yalaoui I, Hong X, Yang Y.-F, Houk KN, Newman SG. J. Am. Chem. Soc. 2017; 139: 1311