Subscribe to RSS
DOI: 10.1055/s-0036-1591777
Cu-Catalyzed Borylative and Silylative Transformations of Allenes: Use of β-Functionalized Allyl Copper Intermediates in Organic Synthesis
Publication History
Received: 29 September 2017
Accepted after revision: 21 November 2017
Publication Date:
20 March 2018 (online)
Abstract
Herein, copper-catalyzed borylative and silylative transformations of allenes using borylcopper or silylcopper as the active catalytic species are described. First, the synthesis and characterization of borylcopper and silylcopper complexes are briefly introduced. Next, the borylative transformations of allenes are summarized including hydroboration, carboboration, and borylative allylation of carbonyl compounds. We next deal with the silylative transformations of allenes such as hydrosilylation, carbosilylation, and silylative allylation of carbonyl compounds.
1 Introduction
2 Synthesis of Borylcopper and Silylcopper Complexes
3 Borylative Transformations
4 Silylative Transformations
5 Conclusions and Future Outlook
-
References
- 1a The Chemistry of Organocopper Compounds . Rappoport Z. Marek I. Wiley; Chichester: 2009
- 1b Tsuji Y. Fujihara T. In Sustainable Catalysis: With Non-endangered Metals, Part 2 . North M. The Royal Society of Chemistry; Cambridge: 2016: 1-40
- 2a Shi W. Lei A. Tetrahedron 2014; 55: 2763
- 2b Siemsen P. Livingston RC. Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
- 3a Ribas X. Güell I. Pure Appl. Chem. 2014; 86: 345
- 3b Casitas A. Ribas X. Chem. Sci. 2013; 4: 2301
- 3c Surry DS. Buchwald SL. Chem. Sci. 2010; 1: 13
- 3d Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
- 3e Evano G. Blanchard N. Toumi M. Chem. Rev. 2008; 108: 3054
- 4 Phosphorus(III) Ligands in Homogeneous Catalysis . Kamer PC. J. van Leeuwen PW. N. M. Wiley; Chichester: 2012
- 5 N-Heterocyclic Carbenes in Synthesis . Nolan SP. Wiley-VCH; Weinheim: 2006
- 6a Abraham J. Lalic G. Sadighi JP. Chem. Rev. 2016; 116: 8318
- 6b Lipshutz BH. Synlett 2009; 509
- 6c Díez-González S. Nolan SP. Acc. Chem. Res. 2008; 41: 349
- 6d Deutsch C. Krause N. Lipshutz BH. Chem. Rev. 2008; 108: 2916
- 7a Rao W.-H. Shi B.-F. Org. Chem. Front. 2016; 3: 1028
- 7b Hirano K. Miura M. Chem. Lett. 2015; 44: 868
- 7c Hirano K. Miura M. Chem. Commun. 2012; 48: 10704
- 8a Chiba S. Tetrahedron Lett. 2016; 57: 3678
- 8b Chemler SR. Karyakarte SD. Khoder ZM. J. Org. Chem. 2017; 82: 11311
- 9a Semba K. Fujihara T. Terao J. Tsuji Y. Tetrahedron 2015; 71: 2183
- 9b Tsuji Y. Fujihara T. Chem. Rec. 2016; 16: 2294
- 9c Yoshida H. ACS Catal. 2016; 6: 1799
- 9d Yoshida H. Chem. Rec. 2016; 16: 419
- 9e Yun J. Asian J. Org. Chem. 2013; 2: 1016
- 10a Modern Allene Chemistry . Krause N. Hashmi AS. K. Wiley-VCH; Weinheim: 2004
- 10b Ma S. Chem. Rev. 2005; 105: 2829
- 10c Jeganmohan M. Cheng C.-H. Chem. Commun. 2008; 3101
- 10d Yu S. Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
- 11 Laitar DS. Müller P. Sadighi JP. J. Am. Chem. Soc. 2005; 127: 17196
- 12 Semba K. Shinomiya M. Fujihara T. Terao J. Tsuji Y. Chem.–Eur. J. 2013; 19: 7125
- 13 Kleeberg C. Cheung MS. Lin Z. Marder TB. J. Am. Chem. Soc. 2011; 133: 19060
- 14 Plotzitzka J. Kleeberg C. Inorg. Chem. 2016; 55: 4813
- 15 Sgro MJ. Piers WE. Romero PE. Dalton Trans. 2015; 44: 3817
- 16 Thorpe SB. Guo X. Santos WL. Chem. Commun. 2011; 47: 424
- 17 Yuan W. Zhang X. Yu Y. Ma S. Chem.–Eur. J. 2013; 19: 7193
- 18 Yuan W. Ma S. Adv. Synth. Catal. 2012; 354: 1867
- 19 Meng F. Jung B. Haeffner F. Hoveyda AH. Org. Lett. 2013; 15: 1414
- 20 Yuan W. Song L. Ma S. Angew. Chem. Int. Ed. 2016; 55: 3140
- 21 Song L. Yuan W. Ma S. Org. Chem. Front. 2017; 4: 1261
- 22 Jang H. Jung B. Hoveyda AH. Org. Lett. 2014; 16: 4658
- 23 Semba K. Bessho N. Fujihara T. Terao J. Tsuji Y. Angew. Chem. Int. Ed. 2014; 53: 9007
- 24 Meng F. McGrath KP. Hoveyda AH. Nature (London) 2014; 513: 367
- 25 Meng F. Li X. Torker S. Shi Y. Shen X. Hoveyda AH. Nature (London) 2016; 537: 387
- 26 Fujihara T. Sawada A. Yamaguchi T. Tani Y. Terao J. Tsuji Y. Angew. Chem. Int. Ed. 2017; 56: 1539
- 27 Boreux A. Indukuri K. Gagosz F. Riant O. ACS Catal. 2017; 7: 8200
- 28 Zhou Y. You W. Smith KB. Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
- 29 Kageyuki I. Itaru O. Takaki K. Yoshida H. Org. Lett. 2017; 19: 830
- 30 Zhao Y.-S. Tang X.-Q. Tao J.-C. Tian P. Lin G.-Q. Org. Biomol. Chem. 2016; 14: 4400
- 31 Zhao W. Montgomery J. J. Am. Chem. Soc. 2016; 138: 9763
- 32 Meng F. Jang H. Jung B. Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 5046
- 33 Rae J. Yeung K. McDouall JJ. W. Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 1102
- 34 Yeung K. Ruscoe RE. Rae J. Pulis AP. Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 11912
- 35 Jang H. Romiti F. Torker S. Hoveyda AH. Nature Chem. 2017; 9: 1269
- 36 Semba K. Fujihara T. Terao J. Tsuji Y. Angew. Chem. Int. Ed. 2013; 52: 12400
- 37 Takemoto Y. Yoshida H. Takaki K. Synthesis 2014; 46: 3024
- 38 Xu Y.-H. Wu L.-H. Wang J. Loh T.-P. Chem. Commun. 2014; 50: 7195
- 39 Pashikanti S. Calderone JA. Nguyen MK. Sibley CD. Santos WL. Org. Lett. 2016; 18: 2443
- 40 Rae J. Hu YC. Procter DJ. Chem.–Eur. J. 2014; 20: 13143
- 41 Tani Y. Fujihara T. Terao J. Tsuji Y. J. Am. Chem. Soc. 2014; 136: 17706
- 42 He Z.-T. Tang X.-Q. Xie L.-B. Chen M. Tian P. Lin G.-Q. Angew. Chem. Int. Ed. 2015; 54: 14815
- 43 Tani Y. Yamaguchi T. Fujihara T. Terao J. Tsuji Y. Chem. Lett. 2015; 44: 271
- 44 Yoshida H. Hayashi S. Takaki K. Chem. Commun. 2015; 51: 9440
- 45 These are summarized in a review: Pulis AP. Yeung K. Procter DJ. Chem. Sci. 2017; 8: 5240