Handchir Mikrochir Plast Chir 2021; 53(04): 412-419
DOI: 10.1055/a-1306-0566
Übersichtsarbeit

Der Einfluss von Gewinnung und Verarbeitung auf das Regenerationspotenzial von Fettstammzellen und die Adipozytenvitalität

The influence of harvesting and processing on the regenerative potential in fat grafting
Marie-Luise Klietz
1   Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
2   Klinik und Poliklinik für Unfall-, Hand- und Wiederherstellungschirurgie, Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
3   Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
,
Maximilian Kückelhaus
1   Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
3   Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
4   Abteilung für Plastische, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Fachklinik Hornheide, Münster
,
Philipp Wiebringhaus
1   Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
3   Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
4   Abteilung für Plastische, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Fachklinik Hornheide, Münster
,
Michael J. Raschke
1   Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
2   Klinik und Poliklinik für Unfall-, Hand- und Wiederherstellungschirurgie, Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
,
Tobias Hirsch
1   Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
3   Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
4   Abteilung für Plastische, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Fachklinik Hornheide, Münster
,
Matthias M. Aitzetmüller
1   Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
3   Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
4   Abteilung für Plastische, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Fachklinik Hornheide, Münster
› Institutsangaben

Zusammenfassung

Der autologe Lipotransfer stellt eine etablierte Innovation der Plastischen Chirurgie dar. Als Methode zur Mammarekonstruktion und -augmentation bietet er eine klinisch immer bedeutender werdende Alternative zu den konventionellen Verfahren wie der Lappenchirurgie oder der Verwendung von Silikonimplantaten.

Der Erfolg oder Misserfolg des autologen Lipotransfers hängt größtenteils vom Überleben der im Fett befindlichen Fettstammzellen ab.

Diese Überlebensrate ist wiederum von einem komplexen Zusammenspiel der Zwischenschritte bei der Fettabsaugung und potenzieller Aufbereitung des Fettgewebes abhängig.

Dieses Review beleuchtet die entscheidenden Prinzipien zur Erzielung optimaler Ergebnisse.

Abstract

The autologous lipotransfer represents an established method in the field of Plastic Surgery. As a reliable and safe method for breast reconstruction and breast augmentation it offers an alternative to established methods such as implants and flap surgery.

Survival rate of adipose derived stromal cells limits success or failure of fat grafting. Slight changes in the fat grafting process can lead to huge changes in ADSC-survival rate.

This review wants to optimize the fat-grafting process to ensure best outcomes.



Publikationsverlauf

Eingereicht: 22. Oktober 2020

Angenommen: 29. Oktober 2020

Artikel online veröffentlicht:
02. Februar 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literaturverzeichnis

  • 1 Neuber F. Fettransplantation. Chir Kongr Verhandl Dsch Gesellch Chir 1893; 22: 66
  • 2 Czerny V. Plastic replacement of the mammary gland by a lipoma. Zentralbl Chir 1895; 27: 72
  • 3 Lexer E. Free fat grafting. Dtsch Med Wochenschr 1910; 36: 640
  • 4 Pinto H. Local fat treatments: classification proposal. Adipocyte 2016; 5 (01) 22-6
  • 5 Flynn TC, Coleman III WP, Field LM. et al. History of liposuction. Derm Surg 2000; 26 (06) 515-20
  • 6 Fischer G. ed Surgical treatment of cellulitis. Third international congress of international academy of cosmetic surgery; Rome: 1975
  • 7 Klein JA. Anesthesia for liposuction in dermatologic surgery. J Derm Surg Oncol 1988; 14 (10) 1124-32
  • 8 Aitzetmüller MM, Sukhova I, Huemer GM. et al. Injizierbare Füllmaterialien – Update und Zukunftsperspektive. HaMiPla 2017; 49 (06) 423-31
  • 9 Spear SL, Pittman T. A prospective study on lipoaugmentation of the breast. Aesthet Surg J 2014; 34 (03) 400-8
  • 10 Choi M, Small K, Levovitz C, Lee C, Fadl A, Karp NS. The volumetric analysis of fat graft survival in breast reconstruction. Plast Reconstr Surg 2013; 131 (02) 185-91
  • 11 Mihalceanu S, Aitzetmüller MM, Machens H-G. et al. Stem Cell Therapies for Tissue Regeneration and Wound Healing: Strategies to Enhance Therapeutic Effectiveness. Regenerative Medicine and Plastic Surgery. Cham, Swiz: Springer; 2019: 187-99
  • 12 Klein JA. Tumescent technique for regional anesthesia permits lidocaine doses of 35 mg/kg for liposuction. The Journal of dermatologic surgery and oncology 1990; 16 (03) 248-63
  • 13 Heymans O, Castus P, Grandjean F. et al. Liposuction: review of the techniques, innovations and applications. Acta Chirurgica Belgica 2006; 106 (06) 647-53
  • 14 Goldman JJ, Wang WZ, Fang X-H. et al. Tumescent liposuction without lidocaine. Plast Reconstr Surg Glob Open 2016; 4: 08
  • 15 Sauter MA, Brett EA, Aitzetmüller MM, Duscher D. Hrsg Harvesting, Processing, and Injection of Lipoaspirate for Soft-Tissue Reconstruction: Details Make the Difference. Regenerative Medicine and Plastic Surgery. Cham, Switzerland: Springer; 2019: 39-43
  • 16 Shiffman MA, Mirrafati S. Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg 2001; 27 (09) 819-26
  • 17 Erdim M, Tezel E, Numanoglu A. et al. The effects of the size of liposuction cannula on adipocyte survival and the optimum temperature for fat graft storage: an experimental study. J Plast Reconstr Aesthet Surg 2009; 62 (09) 1210-4
  • 18 Tambasco D, Arena V, Finocchi V. et al. The impact of liposuction cannula size on adipocyte viability. Ann Plast Surg 2014; 73 (02) 249-51
  • 19 Fodor PB, Vogt PA. Power-assisted lipoplasty (PAL): a clinical pilot study comparing PAL to traditional lipoplasty (TL). Aesthetic Plast Surg 1999; 23 (06) 379-85
  • 20 Hoyos AE, Millard JA. VASER-assisted high-definition liposculpture. Aesthetic surgery journal 2007; 27 (06) 594-604
  • 21 Lee W-CC, Maul TM, Vorp DA. et al. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechan 2007; 6 (04) 265-73
  • 22 Fu N, Yang X, Ba K. et al. Low-intensity pulsed ultrasound induced enhanced adipogenesis of adipose-derived stem cells. Cell Prolif 2013; 46 (03) 312-9
  • 23 Philips BJ, Grahovac TL, Valentin JE. et al. Prevalence of endogenous CD34 + adipose stem cells predicts human fat graft retention in a xenograft model. Plastic and reconstructive surgery 2013; 132 (04) 845
  • 24 Phipps KD, Gebremeskel S, Gillis J. et al. Alternatively activated M2 macrophages improve autologous fat graft survival in a mouse model through induction of angiogenesis. Plastic and reconstructive surgery 2015; 135 (01) 140-9
  • 25 Kato H, Mineda K, Eto H. et al. Degeneration, regeneration, and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plastic and reconstructive surgery 2014; 133 (03) 303e-13e
  • 26 Chung MT, Hyun JS, Lo DD. et al. Micro-computed tomography evaluation of human fat grafts in nude mice. Tissue Eng Part C Methods 2013; 19 (03) 227-32
  • 27 Ginis I, Luo Y, Miura T. et al. Differences between human and mouse embryonic stem cells. Dev Biol 2004; 269 (02) 360-80
  • 28 Kononas TC, Bucky LP, Hurley C. et al. The fate of suctioned and surgically removed fat after reimplantation for soft-tissue augmentation: a volumetric and histologic study in the rabbit. Plastic and reconstructive surgery 1993; 91 (05) 763-8
  • 29 Duscher D, Luan A, Rennert RC. et al. Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells. J Transl Med 2016; 14 (01) 126
  • 30 Duscher D, Maan ZN, Luan A. et al. Ultrasound-assisted liposuction provides a source for functional adipose-derived stromal cells. Cytotherapy 2017; 19 (12) 1491-500
  • 31 Choi K, Kang BJ, Kim H. et al. Low-level laser therapy promotes the osteogenic potential of adipose-derived mesenchymal stem cells seeded on an acellular dermal matrix. J Biomed MATER Res B 2013; 101 (06) 919-28
  • 32 Wu J-Y, Chen C-H, Wang C-Z. et al. Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity. PloS one 2013; 8 (01) e54067
  • 33 Chung MT, Zimmermann AS, Paik KJ. et al. Isolation of Human Adipose-Derived Stromal Cells Using Laser-Assisted Liposuction and Their Therapeutic Potential in Regenerative Medicine. Stem Cells Transl Med 2013; 2 (10) 808-17
  • 34 Keck M, Kober J, Riedl O. et al. Power assisted liposuction to obtain adipose-derived stem cells: impact on viability and differentiation to adipocytes in comparison to manual aspiration. Journal of Plastic, Reconstructive & Aesthetic Surgery 2014; 67 (01) e1-e8
  • 35 Zocchi M. Ultrasonic liposculpturing. Aesthetic Plast Surg 1992; 16 (04) 287-98
  • 36 Oedayrajsingh-Varma M, Van Ham S, Knippenberg M. et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 2006; 8 (02) 166-77
  • 37 Aitzetmüller MM, Machens H-G, Schilling AF. et al. Vergleich des Regenerativen Zytokinprofils von Adipose Derived Stromal Cells (ASCs) Gewonnen Mittels Abdominoplastik, Suction Assisted Liposuction (SAL) und Ultrasound Assisted Liposuction (UAL). Handchirurgie· Mikrochirurgie· Plastische Chirurgie 2018; 50 (02) 74-82
  • 38 Man D, Meyer H. Water jet-assisted lipoplasty. Aesthetic surgery journal 2007; 27 (03) 342-6
  • 39 Bony C, Cren M, Domergue S. et al. Adipose mesenchymal stem cells isolated after manual or water-jet-assisted liposuction display similar properties. Front Immunol 2016; 6: 655
  • 40 Herold C, Ueberreiter K, Cromme F. et al. The use of mamma MRI volumetry to evaluate the rate of fat survival after autologous lipotransfer. HaMiPla 2010; 42 (02) 129
  • 41 Davis K, Rasko Y, Oni G. et al. Comparison of adipocyte viability and fat graft survival in an animal model using a new tissue liquefaction liposuction device vs standard Coleman method for harvesting. Aesthetic surgery journal 2013; 33 (08) 1175-85
  • 42 Paul M, Mulholland RS. A new approach for adipose tissue treatment and body contouring using radiofrequency-assisted liposuction. Aesthetic plastic surgery 2009; 33 (05) 687-94
  • 43 Mohrmann C, Herold C, Pflaum M. et al. Viability and particle size of fat grafts obtained with WAL and PAL techniques. Handchirurgie, Mikrochirurgie, plastische Chirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse: Organ der V 2015; 47 (04) 246-52
  • 44 Pfaff M, Wu W, Zellner E. et al. Processing technique for lipofilling influences adipose-derived stem cell concentration and cell viability in lipoaspirate. Aesthetic plastic surgery 2014; 38 (01) 224-9
  • 45 Botti G, Pascali M, Botti C. et al. A clinical trial in facial fat grafting: filtered and washed versus centrifuged fat. Plastic and reconstructive surgery 2011; 127 (06) 2464-73
  • 46 Alharbi Z, Opländer C, Almakadi S. et al. Conventional vs. micro-fat harvesting: how fat harvesting technique affects tissue-engineering approaches using adipose tissue-derived stem/stromal cells. Journal of Plastic, Reconstructive & Aesthetic Surgery 2013; 66 (09) 1271-8
  • 47 Yazawa M, Mori T, Tuchiya K. et al. Influence of vascularized transplant bed on fat grafting. Wound Repair Regen 2006; 14 (05) 586-92
  • 48 Klietz M-L, Kückelhaus M, Kaiser HW. et al. Stammzellen in der Regenerativen Medizin–Translationale Hürden und Möglichkeiten zur Überwindung. Handchirurgie· Mikrochirurgie· Plastische Chirurgie 2020; 52 (04) 338-349
  • 49 Prantl L, Rennekampff H, Giunta R. et al. Aktuelle Erkenntnisse zur Eigenfett Transplantation anhand der neuen Leitlinie „Autologe Fetttransplantation “. Handchirurgie· Mikrochirurgie· Plastische Chirurgie 2016; 48 (06) 330-6
  • 50 Kuhlmann C ST, Haas EM, Giunta R. et al. Eine aktuelle Übersicht über die Einflussfaktoren der Stammzellspender auf das regenerative Potential von Fettgewebsstammzellen. Handchirurgie· Mikrochirurgie· Plastische Chirurgie 2020; 52: 1-12