Pharmacopsychiatry 2023; 56(03): 87-100
DOI: 10.1055/a-1147-1552
Review

Human Derived Dermal Fibroblasts as in Vitro Research Tool to Study Circadian Rhythmicity in Psychiatric Disorders

Denise Palm
1   Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
,
Adriana Uzoni
1   Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
,
Golo Kronenberg
1   Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
,
Johannes Thome
1   Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
,
Frank Faltraco
1   Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
› Author Affiliations

Abstract

A number of psychiatric disorders are defined by persistent or recurrent sleep-wake disturbances alongside disruptions in circadian rhythm and altered clock gene expression. Circadian rhythms are present not only in the hypothalamic suprachiasmatic nucleus but also in peripheral tissues. In this respect, cultures of human derived dermal fibroblasts may serve as a promising new tool to investigate cellular and molecular mechanisms underlying the pathophysiology of mental illness. In this article, we discuss the advantages of fibroblast cultures to study psychiatric disease. More specifically, we provide an update on recent advances in modeling circadian rhythm disorders using human fibroblasts.

Supplementary Material



Publication History

Received: 28 December 2018
Received: 05 March 2020

Accepted: 22 March 2020

Article published online:
15 May 2023

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Brown SA, Fleury-Olela F, Nagoshi E. et al. The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 2005; 3: e338
  • 2 Hida A, Ohsawa Y, Kitamura S. et al. Evaluation of circadian phenotypes utilizing fibroblasts from patients with circadian rhythm sleep disorders. Transl Psychiatry 2017; 7: e1106
  • 3 Hoyle NP, Seinkmane E, Putker M. et al. Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Sci Transl Med 2017; 9: 1-25
  • 4 Shahpasand K, Uemura I, Saito T. et al. Regulation of mitochondrial transport and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in Alzheimer‘s disease. J Neurosci 2012; 32: 2430-2441
  • 5 Jagannath A, Peirson SN, Foster RG. Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr Opin Neurobiol 2013; 23: 888-894
  • 6 McCarthy MJ, Wei H, Marnoy Z. et al. Genetic and clinical factors predict lithium’s effects on per2 gene expression rhythms in cells from bipolar disorder patients. Transl Psychiatry 2013; 3: e318
  • 7 Gaspar L, van de Werken M, Johansson AS. et al. Human cellular differences in cAMP – CREB signaling correlate with light-dependent melatonin suppression and bipolar disorder. Eur J Neurosci 2014; 40: 2206-2215
  • 8 Spulber S, Conti M, DuPont C. et al. Alterations in circadian entrainment precede the onset of depression-like behavior that does not respond to fluoxetine. Transl Psychiatry 2015; 5: e603
  • 9 Johansson AS, Owe-Larsson B, Hetta J. et al. Altered circadian clock gene expression in patients with schizophrenia. Schizophr Res 2016; 174: 17-23
  • 10 Kalman S, Garbett KA, Janka Z. et al. Human dermal fibroblasts in psychiatry research. Neuroscience 2016; 320: 105-121
  • 11 Coogan AN, McGowan NM. A systematic review of circadian function, chronotype and chronotherapy in attention deficit hyperactivity disorder. Atten Defic Hyperact Disord 2017; 9: 129-147
  • 12 Sato TY, Yamada RG, Ukai H. et al. Feedback repression is required for mammalian circadian clock function. Nat Genet 2006; 38: 213-319
  • 13 Lee CE, Etchegaray J-P, Cagampang FR. et al. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001; 107: 855-867
  • 14 Kume KZ, Zylka MJ, Sriram S. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 1999; 98: 193-205
  • 15 Shearman LP, Sriram S, Weaver DR. et al. Interacting molecular loops in the mammalian circadian clock. Science 2000; 288: 1013-1019
  • 16 Preitner ND, Damiola F, Lopez-Molina L. et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110: 251-260
  • 17 Ueda HR, Chen W, Adachi A. et al. A transcription factor response element for gene expression during circadian night. Nature 2002; 418: 534-539
  • 18 Marcheva B, Ramsey KM, Buhr ED. et al. Disruption of the clock components clock and bmal1 leads to hypoinsulinaemia and diabetes. Nature 2010; 466: 627-631
  • 19 Janich P, Pascual G, Merlos-Suarez A. et al. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 2011; 480: 209-214
  • 20 Paschos GK, Ibrahim S, Song WL. et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 2012; 18: 1768-1777
  • 21 Jiang F, VanDyke RD, Zhang J. et al. Effect of chronic sleep restriction on sleepiness and working memory in adolescents and young adults. J Clin Exp Neuropsychol 2011; 33: 892-900
  • 22 Deliens G, Gilson M, Peigneux P. Sleep and the processing of emotions. Exp Brain Res 2014; 232: 1403-1414
  • 23 Coogan AN, Baird AL, Popa-Wagner A. et al. Circadian rhythms and attention deficit hyperactivity disorder: The what, the when and the why. Prog Neuropsychopharmacol Biol Psychiatry 2016; 67: 74-81
  • 24 Charrier A, Olliac B, Roubertoux P. et al. Clock genes and altered sleep-wake rhythms: Their role in the development of psychiatric disorders. Int J Mol Sci 2017; 18: 1-22
  • 25 McCarthy MJ, Fernandes M, Kranzler HR. et al. Circadian clock period inversely correlates with illness severity in cells from patients with alcohol use disorders. Alcohol Clin Exp Res 2013; 37: 1304-1310
  • 26 Frank E, Benabou M, Bentzley B. et al. Influencing circadian and sleep-wake regulation for prevention and intervention in mood and anxiety disorders: What makes a good homeostat?. Ann NY Acad Sci 2014; 1334: 1-25
  • 27 McCarthy MJ, Wei H, Nievergelt CM. et al. Chronotype and cellular circadian rhythms predict the clinical response to lithium maintenance treatment in patients with bipolar disorder. Neuropsychopharmacology 2019; 44: 620-628
  • 28 Kamimura E, Ueno Y, Tanaka S. et al. New rat model for attention deficit hyperactive disorder (ADHD). Comp Med 2001; 51: 245-251
  • 29 Russell VA, Sagvolden T, Johansen EB. Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct 2005; 1: 9
  • 30 Wicht H, Korf HW, Ackermann H. et al. Chronotypes and rhythm stability in mice. Chronobiol Int 2014; 31: 27-36
  • 31 Pfeffer M, Wicht H, von Gall C. et al. Owls and larks in mice. Front Neurol 2015; 6: 101
  • 32 von Schantz MA, Clocks SN. Genes and sleep. J R Soc Med 2003; 96: 486-489
  • 33 von Schantz M. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. J Genet 2008; 87: 513-519
  • 34 Hankins MW, Peirson SN, Foster RG. Melanopsin: an exciting photopigment. Trends Neurosci 2008; 31: 27-36
  • 35 Nikhil KL, Goirik G, Ratna K. et al. Role of temperature in mediating morning and evening emergence chronotypes in fruit flies Drosophila melanogaster. J Biol Rhythms 2014; 29: 427-441
  • 36 Moura CA, Lima J, Silveira VAM. et al. Time place learning and activity profile under constant light and constant dark in zebrafish (Danio rerio). Behav Processes 2017; 138: 49-57
  • 37 Seth A, Stemple DL, Barroso I. The emerging use of zebrafish to model metabolic disease. Dis Model Mech 2013; 6: 1080-1088
  • 38 Zanello SB, Jackson DM, Holick MF. Expression of the circadian clock genes clock and period1 in human skin. J Invest Dermatol 2000; 115: 757-760
  • 39 Nagoshi E, Saini C, Bauer C. et al. Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 2004; 119: 693-705
  • 40 Welsh DK, Yoo SH, Liu AC. et al. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 2004; 14: 2289-2295
  • 41 Saini C, Brown SA, Dibner C. Human peripheral clocks: applications for studying circadian phenotypes in physiology and pathophysiology. Front Neurol 2015; 6: 95
  • 42 Brown SK, Kunz D, Dumas A. et al. Molecular insights into human daily behavior. Proc Natl Acad Sci USA 2008; 105: 1602-1607
  • 43 Sandu C, Dumas M, Malan A. et al. Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries. Cell Mol Life Sci 2012; 69: 3329-3339
  • 44 Sandu C, Liu T, Malan A. et al. Circadian clocks in rat skin and dermal fibroblasts: Differential effects of aging, temperature and melatonin. Cell Mol Life Sci 2015; 72: 2237-2248
  • 45 Noguchi T, Wang LL, Welsh DK. Fibroblast per2 circadian rhythmicity depends on cell density. J Biol Rhythms 2013; 28: 183-192
  • 46 Spanagel R, Pendyala G, Abarca C. et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 2005; 11: 35-42
  • 47 Comasco E, Nordquist N, Gokturk C. et al. The clock gene per2 and sleep problems: Association with alcohol consumption among Swedish adolescents. Ups J Med Sci 2010; 115: 41-48
  • 48 Lippert J, Halfter H, Heidbreder A. et al. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia. PLoS One 2014; 9: e85255
  • 49 Amsterdam JD, Newberg AB. A preliminary study of dopamine transporter binding in bipolar and unipolar depressed patients and healthy controls. Neuropsychobiology 2007; 55: 167-170
  • 50 Greenwood TA, Alexander M, Keck PE. et al. Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am J Med Genet 2001; 105: 145-151
  • 51 Greenwood TA, Schork NJ, Eskin E. et al. Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatry 2006; 11: 115
  • 52 Hood S, Cassidy P, Cossette MP. et al. Endogenous dopamine regulates the rhythm of expression of the clock protein per2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J Neurosci. 2010 30. 14046-14058
  • 53 Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001; 65: 391-426
  • 54 Kaladchibachi SA, Doble B, Anthopoulos N. et al. Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: A molecular link in the therapeutic action of lithium. J Circadian Rhythms 2007; 5: 3
  • 55 Bamne MN, Ponder CA, Wood JA. et al. Application of an ex vivo cellular model of circadian variation for bipolar disorder research: A proof of concept study. Bipolar Disord 2013; 15: 694-700
  • 56 Cronin P, McCarthy MJ, Lim ASP. et al. Circadian alterations during early stages of Alzheimer’s disease are associated with aberrant cycles of DNA methylation in BMAL1 . Alzheimers Dement 2017; 13: 689-700
  • 57 Klerman EB. Clinical aspects of human circadian rhythms. J Biol Rhythms 2005; 20: 375-386
  • 58 De Sarno P, Li X, Jope RS. Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology 2002; 43: 1158-1164
  • 59 Chansard M, Molyneux P, Nomura K. et al. c-Jun N-terminal kinase inhibitor SP600125 modulates the period of mammalian circadian rhythms. Neuroscience 2007; 145: 812-823
  • 60 Johansson AS, Brask J, Owe-Larsson B. et al. Valproic acid phase shifts the rhythmic expression of Period2::Luciferase. J Biol Rhythms 2011; 26: 541-551
  • 61 McCarthy MJ, Le Roux MJ, Wei H. et al. Calcium channel genes associated with bipolar disorder modulate lithium’s amplification of circadian rhythms. Neuropharmacology 2016; 101: 439-448
  • 62 McCarthy MJ, Wei H, Landgraf D. et al. Disinhibition of the extracellular-signal-regulated kinase restores the amplification of circadian rhythms by lithium in cells from bipolar disorder patients. Eur Neuropsychopharmacol 2016; 26: 1310-1319
  • 63 Kittel-Schneider S, Hilscher M, Scholz CJ. et al. Lithium-induced gene expression alterations in two peripheral cell models of bipolar disorder. World J Biol Psychiatry. 2017 DOI: 10.1080/15622975.2017.1396357 1-14
  • 64 Baird AL, Coogan AN, Kaufling J. et al. Daily methylphenidate and atomoxetine treatment impacts on clock gene protein expression in the mouse brain. Brain Res 2013; 1513: 61-71
  • 65 O’Keeffe SM, Thome J, Coogan AN. The noradrenaline reuptake inhibitor atomoxetine phase-shifts the circadian clock in mice. Neuroscience 2012; 201: 219-230
  • 66 Mendoza J, van Diepen HC, Pereira RR. et al. Time-shifting effects of methylphenidate on daily rhythms in the diurnal rodent arvicanthis ansorgei. Psychopharmacology (Berl) 2018; 235: 2323-2333
  • 67 Coogan AN, Schenk M, Palm D. et al. Impact of adult attention deficit hyperactivity disorder and medication status on sleep/wake behavior and molecular circadian rhythms. Neuropsychopharmacology 2019; 44: 1198-1206
  • 68 Mahadik SP, Mukherjee S. Cultured skin fibroblasts as a cell model for investigating schizophrenia. J Psychiatr Res 1996; 30: 421-439
  • 69 Gysin R, Kraftsik R, Boulat O. et al. Genetic dysregulation of glutathione synthesis predicts alteration of plasma thiol redox status in schizophrenia. Antioxid Redox Signal 2011; 15: 2003-2010
  • 70 Tosic M, Ott J, Barral S. et al. Schizophrenia and oxidative stress: Glutamate cysteine ligase modifier as a susceptibility gene. Am J Hum Genet 2006; 79: 586-592
  • 71 Gysin R, Riederer IM, Cuenod M. et al. Skin fibroblast model to study an impaired glutathione synthesis: Consequences of a genetic polymorphism on the proteome. Brain Res Bull 2009; 79: 46-52
  • 72 Wang L, Lockstone HE, Guest PC. et al. Expression profiling of fibroblasts identifies cell cycle abnormalities in schizophrenia. J Proteome Res 2010; 9: 521-527
  • 73 Catts VS, Catts SV, McGrath JJ. et al. Apoptosis and schizophrenia: A pilot study based on dermal fibroblast cell lines. Schizophr Res 2006; 84: 20-28
  • 74 Gasso P, Mas S, Molina O. et al. Increased susceptibility to apoptosis in cultured fibroblasts from antipsychotic-naive first-episode schizophrenia patients. J Psychiatr Res 2014; 48: 94-101
  • 75 Batalla A, Bargallo N, Gasso P. et al. Apoptotic markers in cultured fibroblasts correlate with brain metabolites and regional brain volume in antipsychotic-naive first-episode schizophrenia and healthy controls. Transl Psychiatry 2015; 5: e626
  • 76 Olsson E, Wiesel FA, Bjerkenstedt L. et al. Tyrosine transport in fibroblasts from healthy volunteers and patients with schizophrenia. Neurosci Lett 2006; 393: 211-215
  • 77 Flyckt L, Edman G, Venizelos N. et al. Aberrant tyrosine transport across the fibroblast membrane in patients with schizophrenia—indications of maternal inheritance. J Psychiatr Res 2011; 45: 519-525
  • 78 Bongiovanni R, Leonard S, Jaskiw GE. A simplified method to quantify dysregulated tyrosine transport in schizophrenia. Schizophr Res 2013; 150: 386-391
  • 79 Huang JH, Park H, Iaconelli J. et al. Unbiased metabolite profiling of schizophrenia fibroblasts under stressful perturbations reveals dysregulation of plasmalogens and phosphatidylcholines. J Proteome Res 2017; 16: 481-493
  • 80 Cattane N, Minelli A, Milanesi E. et al. Altered gene expression in schizophrenia: Findings from transcriptional signatures in fibroblasts and blood. PLoS One 2015; 10: e0116686
  • 81 Boks MP, Houtepen LC, Xu Z. et al. Genetic vulnerability to DUSP22 promoter hypermethylation is involved in the relation between in utero famine exposure and schizophrenia. NPJ Schizophr 2018; 4: 16
  • 82 Akin D, Manier DH, Sanders-Bush E. et al. Signal transduction abnormalities in melancholic depression. Int J Neuropsychopharmacol 2005; 8: 5-16
  • 83 Wassef AA, O’Boyle M, Gardner R. et al. Glucocorticoid receptor binding in three different cell types in major depressive disorder: Lack of evidence of receptor binding defect. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 65-78
  • 84 Shelton RC, Mainer DH, Sulser F. cAMP-dependent protein kinase activity in major depression. Am J Psychiatry 1996; 153: 1037-1042
  • 85 Shelton RC, Manier DH, Peterson CS. et al. Cyclic AMP-dependent protein kinase in subtypes of major depression and normal volunteers. Int J Neuropsychopharmacol 1999; 2: 187-192
  • 86 Manier DH, Shelton RC, Ellis TC. et al. Human fibroblasts as a relevant model to study signal transduction in affective disorders. J Affect Disord 2000; 61: 51-58
  • 87 Gibson SA, Korade Z, Shelton RC. Oxidative stress and glutathione response in tissue cultures from persons with major depression. J Psychiatr Res 2012; 46: 1326-1332
  • 88 Garbett KA, Vereczkei A, Kalman S. et al. Fibroblasts from patients with major depressive disorder show distinct transcriptional response to metabolic stressors. Transl Psychiatry 2015; 5: e523
  • 89 Garbett KA, Vereczkei A, Kalman S. et al. Coordinated messenger RNA/microRNA changes in fibroblasts of patients with major depression. Biol Psychiatry 2015; 77: 256-265
  • 90 Himmerich H, Schonherr J, Fulda S. et al. Impact of antipsychotics on cytokine production in-vitro. J Psychiatr Res 2011; 45: 1358-1365
  • 91 Zou W, Feng R, Yang Y. Changes in the serum levels of inflammatory cytokines in antidepressant drug-naive patients with major depression. PLoS One 2018; 13: e0197267
  • 92 Money KM, Olah Z, Korade Z. et al. An altered peripheral IL6 response in major depressive disorder. Neurobiol Dis 2016; 89: 46-54
  • 93 Ciobanu LG, Sachdev PS, Trollor JN. et al. Differential gene expression in brain and peripheral tissues in depression across the life span: A review of replicated findings. Neurosci Biobehav Rev 2016; 71: 281-293
  • 94 Chiu CT, Wang Z, Hunsberger JG. et al. Therapeutic potential of mood stabilizers lithium and valproic acid: Beyond bipolar disorder. Pharmacol Rev 2013; 65: 105-142
  • 95 Benard V, Vaiva G, Masson M. et al. Lithium and suicide prevention in bipolar disorder. Encephale 2016; 42: 234-241
  • 96 Malhi GS, Tanious M, Das P. et al. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs 2013; 27: 135-153
  • 97 Bopp SK, Heilbronner U, Schlattmann P. et al. Leptin gene polymorphisms are associated with weight gain during lithium augmentation in patients with major depression. Eur Neuropsychopharmacol 2019; 29: 211-221
  • 98 Johansson AS, Owe-Larsson B, Asp L. et al. Activation of kynurenine pathway in ex vivo fibroblasts from patients with bipolar disorder or schizophrenia: Cytokine challenge increases production of 3-hydroxykynurenine. J Psychiatr Res 2013; 47: 1815-1823
  • 99 Gaspar L, Brown SA. Measuring circadian clock function in human cells. Methods Enzymol 2015; 552: 231-256
  • 100 Muneer A. The neurobiology of bipolar disorder: An Integrated Approach. Chonnam Med J 2016; 52: 18-37
  • 101 Sigitova E, Fisar Z, Hroudova J. et al. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017; 71: 77-103
  • 102 Olsson SK, Samuelsson M, Saetre P. et al. Elevated levels of kynurenic acid in the cerebrospinal fluid of patients with bipolar disorder. J Psychiatry Neurosci 2010; 35: 195-199
  • 103 Ren X, Rizavi HS, Khan MA. et al. Alteration of cyclic-AMP response element binding protein in the postmortem brain of subjects with bipolar disorder and schizophrenia. J Affect Disord. 2014 152-154 326-333
  • 104 O’Neill JS, Maywood ES, Chesham JE. et al. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 2008; 320: 949-953
  • 105 Johansson J, Landgren M, Fernell E. et al. Altered tryptophan and alanine transport in fibroblasts from boys with attention-deficit/hyperactivity disorder (ADHD): An in vitro study. Behav Brain Funct 2011; 7: 40
  • 106 Korman M, Palm D, Uzoni A. et al. ADHD 24/7: Circadian CLOCK Genes, Chronotherapy and Sleep/Wake Cycle Insufficiencies in ADHD. World J Biol Psychiatry. 2018 DOI: 10.1080/15622975.2018.1523565: 1-35
  • 107 Sorbi S, Nacmias B, Forleo P. et al. APP717 and Alzheimer’s disease in Italy. Nat Genet 1993; 4: 10
  • 108 Rogaev EI, Sherrington R, Rogaeva EA. et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995; 376: 775-778
  • 109 Sherrington R, Froelich S, Sorbi S. et al. Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum Mol Genet 1996; 5: 985-988
  • 110 Palotas A, Kalman J, Palotas M. et al. Fibroblasts and lymphocytes from Alzheimer patients are resistant to beta-amyloid-induced increase in the intracellular calcium concentration. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 971-974
  • 111 Moreira PI, Harris PL, Zhu X. et al. Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimers Dis 2007; 12: 195-206
  • 112 Huang HM, Fowler C, Xu H. et al. Mitochondrial function in fibroblasts with aging in culture and/or Alzheimer’s disease. Neurobiol Aging 2005; 26: 839-848
  • 113 Coffey EE, Beckel JM, Laties AM. et al. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 2014; 263: 111-124
  • 114 Evangelisti E, Zampagni M, Cascella R. et al. Plasma membrane injury depends on bilayer lipid composition in Alzheimer’s disease. J Alzheimers Dis 2014; 41: 289-300
  • 115 Jove M, Portero-Otin M, Naudi A. et al. Metabolomics of human brain aging and age-related neurodegenerative diseases. J Neuropathol Exp Neurol 2014; 73: 640-657
  • 116 Sonntag KC, Ryu WI, Amirault KM. et al. Late-onset Alzheimer’s disease is associated with inherent changes in bioenergetics profiles. Sci Rep 2017; 7: 14038
  • 117 Aoki Y, Manzano R, Lee Y. et al. C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 2017; 140: 887-897
  • 118 Wang X, Huang T, Bu G. et al. Dysregulation of protein trafficking in neurodegeneration. Mol Neurodegener 2014; 9: 31
  • 119 Karch CM, Hernandez D, Wang JC. et al. Human fibroblast and stem cell resource from the Dominantly Inherited Alzheimer Network. Alzheimers Res Ther 2018; 10: 69