RSS-Feed abonnieren
DOI: 10.1055/s-2006-923883
Georg Thieme Verlag Stuttgart KG · New York
Auxin Biosynthesis in Maize
Publikationsverlauf
Received: September 29, 2005
Accepted: January 11, 2006
Publikationsdatum:
19. April 2006 (online)
Abstract
For the biosynthesis of the phytohormone indole-3-acetic acid (IAA), a number of tryptophan-dependent and ‐independent pathways have been discussed. Maize is an appropriate model system to analyze IAA biosynthesis particularly because high quantities of IAA conjugates are stored in the endosperm. This allowed precursor feeding experiments in a kernel culture system followed by retrobiosynthetic NMR analysis, which strongly suggested that tryptophan-dependent IAA synthesis is the predominant route for auxin biosynthesis in the maize kernel. Two nitrilases ZmNIT1 and ZmNIT2 are expressed in seeds. ZmNIT2 efficiently hydrolyzes indole-3-acetonitrile (IAN) to IAA and thus could be involved in auxin biosynthesis. Redundant pathways, e.g., via indole-3-acetaldehyde could imply that multiple mutants will be necessary to obtain IAA-deficient plants and to conclusively identify relevant genes for IAA biosynthesis.
Key words
Auxin - indole-3-acetic acid - tryptophan - maize - nitrilase.
References
- 1 Bak S., Tax F. E., Feldmann K. A., Galbraith D. W., Feyereisen R.. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell. (2001); 13 101-111
- 2 Barlier I., Kowalczyk M., Marchant A., Ljung K., Bhalerao R., Bennett M., Sandberg G., Bellini C.. The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proceedings of the National Academy of Sciences of the USA. (2000); 97 14819-14824
- 3 Cooney T. P., Nonhebel H. M.. The measurement and mass spectral identification of indole-3-pyruvate from tomato shoots. Biochemical and Biophysical Research Communication. (1989); 31 761-766
- 4 Cutler S. R., Somerville C. R.. Imaging plant cell death: GFP-Nit1 aggregation marks an early step of wound and herbicide induced cell death. BioMed Central Plant Biology. (2005); 5 4
-
5 Eisenreich W., Bacher A..
Elucidation of biosynthetic pathways by retrodictive/predictive comparison of isotopomer patterns determined by NMR spectroscopy. Setlow, J. K., ed. Genetic Engineering, Principles and Methods, Vol. 22. New York; Kluwer Academic/Plenum Publishers (2000): 121-153 - 6 Epstein E., Cohen J. D., Bandurski R. S.. Concentration and metabolic turnover of indoles in germinating kernels of Zea mays L. Plant Physiology. (1980); 65 415-421
- 7 Frey M., Chomet P., Glawischnig E., Stettner C., Grün S., Winkelmair A., Eisenreich W., Bacher A., Meeley R. B., Briggs S. P., Simcox K., Gierl A.. Analysis of a chemical plant defense mechanism in grasses. Science. (1997); 277 696-699
- 8 Glawischnig E., Gierl A., Tomas A., Bacher A., Eisenreich W.. Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels. Plant Physiology. (2001); 125 1178-1186
- 9 Glawischnig E., Hansen B. G., Olsen C. E., Halkier B. A.. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. . Proceedings of the National Academy of Sciences of the USA. (2004); 101 8245-8250
- 10 Glawischnig E., Tomas A., Eisenreich W., Spiteller P., Bacher A., Gierl A.. Auxin biosynthesis in maize kernels. Plant Physiology. (2000); 123 1109-1119
- 11 Grsic-Rausch S., Kobelt P., Siemens J. M., Bischoff M., Ludwig-Müller J.. Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis. . Plant Physiology. (2000); 122 369-378
- 12 Helminger J., Rausch T., Hilgenberg W.. Metabolism of 14C-indole-3-acetaldoxime by hypocotyls of Chinese cabbage. Phytochemistry. (1985); 24 2497-2502
- 13 Jensen P. J., Bandurski R. S.. Incorporation of deuterium into indole-3-acetic acid and tryptophan in Zea mays seedlings grown on 30 % deuterium oxide. Journal of Plant Physiology. (1996); 147 697-702
- 14 Koshiba T., Saito E., Ono N., Yamamoto N., Sato M.. Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiology. (1996); 110 781-789
- 15 Kutz A., Müller A., Peter H., Kaiser W. M., Piotrowski M., Weiler E. M.. A role for nitrilase 3 in the regulation of root morphology in sulfur starving Arabidopsis thaliana. . The Plant Journal. (2002); 30 95-106
- 16 Ljung K., Hull A. K., Kowalczyk M., Marchant A., Celenza J., Cohen J. D., Sandberg G.. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. . Plant Molecular Biology. (2002); 50 309-332
- 17 Ludwig-Müller J., Hilgenberg W.. A plasma membrane-bound enzyme oxidizes L-tryptophan to indole-3-acetaldoxime. Physiologia Plantarum. (1988); 74 240-250
- 18 Mikkelsen M. D., Naur P., Halkier B. A.. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. The Plant Journal. (2004); 37 770-777
- 19 Müller A., Weiler E. W.. IAA-synthase, an enzyme complex from Arabidopsis thaliana catalyzing the formation of indole-3-acetic acid from (S)-tryptophan. Biological Chemistry. (2000); 381 679-686
- 20 Normanly J., Cohen J., Fink G. R.. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proceedings of the National Academy of Sciences of the USA. (1993); 90 10355-10359
- 21 Östin A., Ilic N., Cohen J. D.. An in vitro system from maize seedlings for tryptophan-independent indole-3-acetic acid biosynthesis. Plant Physiology. (1999); 119 173-178
- 22 Park W. J., Kriechbaumer V., Müller A., Piotrowski M., Meeley R. B., Gierl A., Glawischnig E.. The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiology. (2003); 133 794-802
- 23 Piotrowski M., Schönfelder S., Weiler E. W.. The Arabidopsis thaliana NIT4 and its orthologs in tobacco β-cyano-L-alanine hydratase/nitrilase. Journal of Biological Chemistry. (2001); 276 2616-2621
- 24 Pollmann S., Neu D., Weiler E. W.. Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry. (2003); 62 293-300
- 25 Sekimoto H., Seo M., Dohmae N., Takio K., Kamiya Y., Koshiba T.. Cloning and molecular characterization of plant aldehyde oxidase. Journal of Biological Chemistry. (1997); 272 15280-15285
- 26 Seo M., Peeters A. J., Koiwai H., Oritani T., Marion-Poll A., Zeevaart J. A., Koornneef M., Kamiya Y., Koshiba T.. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy of Sciences of the USA. (2000); 97 12908-12913
- 27 Thimann K. V., Mahadevan S.. Nitrilase. I. Occurrence, preparation and general mode of action. Archives of Biochemistry and Biophysics. (1964); 105 133-141
- 28 Vorwerk S., Biernacki S., Hillebrand H., Janzik I., Müller A., Weiler E. W., Piotrowski M.. Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta. (2001); 212 508-516
- 29 Woodward A. W., Bartel B.. Auxin: regulation, action, and interaction. Annals of Botany. (2005); 95 707-735
- 30 Wright A. D., Sampson M. B., Neuffer M. G., Michalczuk L., Slovin J. P., Cohen J. D.. Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science. (1991); 254 998-1000
- 31 Zook M.. Biosynthesis of camalexin from tryptophan pathway intermediates in cell-suspension cultures of Arabidopsis. . Plant Physiology. (1998); 118 1389-1393
E. Glawischnig
Lehrstuhl für Genetik
Technische Universität München
Am Hochanger 8
85350 Freising
Germany
eMail: egl@wzw.tum.de
Guest Editor: R. Reski