Planta Med 2015; 81(02): 95-107
DOI: 10.1055/s-0034-1396148
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Symphonia globulifera, a Widespread Source of Complex Metabolites with Potent Biological Activities

Yann Fromentin
1   Laboratoire de Pharmacognosie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
,
Kevin Cottet
1   Laboratoire de Pharmacognosie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
,
Marina Kritsanida
1   Laboratoire de Pharmacognosie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
,
Sylvie Michel
1   Laboratoire de Pharmacognosie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
,
Nicolas Gaboriaud-Kolar
1   Laboratoire de Pharmacognosie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
,
Marie-Christine Lallemand
1   Laboratoire de Pharmacognosie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
› Author Affiliations
Further Information

Publication History

received 15 July 2014
revised 12 October 2014

accepted 19 November 2014

Publication Date:
15 January 2015 (online)

Abstract

Symphonia globulifera has been widely used in traditional medicine and has therefore been subjected to several phytochemical studies in the American and African continents. Interestingly, some disparities have been observed concerning its metabolic profile. Several phytochemical studies of S. globulifera have led to the identification of more than 40 compounds, including several polycyclic polyprenylated acylphloroglucinols. Biological evaluations have pointed out the promising biological activities of these secondary metabolites, mostly as antiparasitic or antimicrobial, confirming the traditional use of this plant. The purpose of this review is to describe the natural occurrence, botanical aspects, ethnomedicinal use, structure, and biogenesis, as well as biological activities of compounds isolated from this species according to their provenance.

 
  • References

  • 1 Harvey A. Natural products in drug discovery. Drug Discov Today 2008; 13: 894-901
  • 2 Balick MJ, Mendelsohn R. Assessing the economic value of traditional medicines from tropical rain forests. Conser Biol 1992; 6: 128-130
  • 3 Lopez A, Hudson JB, Towers GHN. Antiviral and antimicrobial activities of Colombian medicinal plants. J Ethnopharmacol 2001; 77: 189-196
  • 4 Ssegawa P, Kasenene JM. Medicinal plant diversity and uses in the Sango bay area, Southern Uganda. J Ethnopharmacol 2007; 113: 521-540
  • 5 Gupta MP, Solís PN, Calderón AI, Guionneau-Sinclair F, Correa M, Galdames C, Guerra C, Espinosa A, Alvenda GI, Robles G, Ocampo R. Medical ethnobotany of the Teribes of Bocas del Toro, Panama. J Ethnopharmacol 2005; 96: 389-401
  • 6 Gustafson KR, Blunt JW, Munro MHG, Fuller RW, Mckee TC, Cardellina JH, Mcmahon JB, Cragg GM, Boyd MR. The guttiferones, HIV-Inhibitory Benzophenones from Symphonia globulifera, Garcinia livingstonei, Garcinia ovalifolia and Clusia rosea . Tetrahedron 1992; 48: 10093-10102
  • 7 Kumar S, Sharma S, Chattopadhyay SK. The potential health benefit of polyisoprenylated benzophenones from Garcinia and related genera: ethno botanical and therapeutic importance. Fitoterapia 2013; 89: 86-125
  • 8 Dick CW, Abdul-Salim K, Bermingham E. Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. Am Nat 2003; 162: 691-703
  • 9 Tropicos database, Missouri Botanical Garden. Available at http://www.tropicos.org Accessed October 1, 2014
  • 10 Dick CW, Heuertz M. The complex biogeographic histrory of widespread tropical tree species. Evolution 2008; 62: 2760-2774
  • 11 Lemée A. Flore de la Guyane française. Vol. 4. Paris: Lechevallier; 1952.  –  1956
  • 12 Gill GE, Fowler RT, Mori SA. Pollination biology of Symphonia globulifera (Clusiaceae) in central French Guiana. Biotropica 1998; 30: 139-144
  • 13 The International Plant Names Index 2013. Available at http://www.ipni.org Accessed October 1, 2014
  • 14 Budde KB, González-Martínez SC, Hardy OJ, Heuertz M. The ancient tropical rainforest tree Symphonia globulifera L. f. (Clusiaceae) was not restricted to postulated Pleistocene refugia in Atlantic Equatorial Africa. Heredity 2013; 111: 66-76
  • 15 Akendengué B, Louis AM. Medicinal plants used by the Masango people in Gabon. J Ethnopharmacol 1994; 41: 193-200
  • 16 Ajibesin K, Ekpo B, Bala D, Essien E, Adesanya S. Ethnobotanical survey of Akwa Ibom State of Nigeria. J Ethnopharmacol 2008; 115: 387-408
  • 17 Lenta BN, Vonthron-Sénécheau C, Weniger B, Devkota KP, Ngoupayo J, Kaiser M, Naz Q, Choudhary MI, Tsamo E, Sewald N. Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds from Allanblackia monticola and Symphonia globulifera . Molecules 2007; 12: 1548-1557
  • 18 Coelho-Ferreira M. Medicinal knowledge and plant utilization in an Amazonian coastal community of Marudá, Pará State (Brazil). J Ethnopharmacol 2009; 126: 159-175
  • 19 Kadiri AB. Evaluation of medicinal herbal trade (Paraga) in Lagos State of Nigeria. Ethno Leaflets 2008; 12: 677-681
  • 20 Ciochina R, Grossman RB. Polycyclic polyprenylated acylphloroglucinols. Chem Rev 2006; 106: 3963-3986
  • 21 Ngouela S, Lenta BN, Noungoue DT, Ngoupayo J, Boyom FF, Tsamo E, Gut J, Rosenthal PJ, Connolly JD. Anti-plasmodial and antioxidant activities of constituents of the seed shells of Symphonia globulifera Linn f. Phytochemistry 2006; 67: 302-306
  • 22 Marti G, Eparvier V, Moretti C, Prado S, Grellier P, Hue N, Thoison O, Delpech B, Guéritte F, Litaudon M. Antiplasmodial benzophenone derivatives from the root barks of Symphonia globulifera (Clusiaceae). Phytochemistry 2010; 71: 964-974
  • 23 Nkengfack AE, Mkounga P, Meyer M, Fomum ZT, Bodo B. Globulixanthones C, D and E: three prenylated xanthones with antimicrobial properties from the root bark of Symphonia globulifera . Phytochemistry 2002; 61: 181-187
  • 24 Nkengfack AE, Mkounga P, Fomum ZT, Meyer M, Bodo B. Globulixanthones A and B, two new cytotoxic xanthones with isoprenoid groups from the root bark of Symphonia globulifera . J Nat Prod 2002; 65: 734-736
  • 25 Bayma JC, Arruda MSP, Neto MS. A prenylated xanthone from the bark of Symphonia globulifera . Phytochemistry 1998; 38: 1159-1160
  • 26 Locksley HD, Moore I, Scheinmann F. Extractives from Guttiferae. Part II. The isolation and structure of four polyhydroxyxanthones in Symphonia globulifera L. J Chem Soc C 1966; 430-432
  • 27 Mkounga P, Fomum ZT, Meyer M, Bodo B, Nkengfack AE. Globulixanthone F, a new polyoxygenated xanthone with an isoprenoid group and two antimicrobial biflavonoids from the stem bark of Symphonia globulifera . Nat Prod Comm 2009; 4: 803-808
  • 28 Locksley HD, Moore I, Scheinmann F. Extractives from Guttiferae. Part III. The isolation and structure of symphoxanthone and globuxanthone from Symphonia globulifera L. J Chem Soc C 1966; 2186-2190
  • 29 Locksley HD, Moore I, Scheinmann F. Extractives from Guttiferae. Part IV. Isolation and structure of ugaxanthone and M barraxanthone from Symphonia globulifera L. J Chem Soc C 1966; 2265-2269
  • 30 Locksley HD, Moore I, Scheinmann F. Extractives from guttiferae-VI: the significance of maclurin in xanthone biosynthesis. Tetrahedron 1967; 23: 2229-2234
  • 31 Li XC, Joshi AS, ElSohly HN, Khan SI, Jacob MR, Zhang Z, Khan IA, Ferreira D, Walker LA, Broedel jr. SE, Raulli RE, Cihlar RL. Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies. J Nat Prod 2002; 65: 1909-1914
  • 32 Hamed W, Brajeul S, Mahuteau-Betzer F, Thoison O, Mons S, Delpech B, Nguyen VH, Sévenet T, Marazano C. Oblongifolins A–D, polyprenylated benzoylphloroglucinol derivatives from Garcinia oblongifolia . J Nat Prod 2006; 69: 774-777
  • 33 Huang SX, Feng C, Zhou Y, Xu G, Han QB, Qiao CF, Chang DC, Luo KQ, Xu HX. Bioassay-guided isolation of xanthones and polycyclic prenylated acylphloroglucinols from Garcinia oblongifolia . J Nat Prod 2009; 72: 130-135
  • 34 Xu G, Feng C, Zhou Y, Han QB, Qiao CF, Huang SX, Chang DC, Zhao QS, Luo KQ, Xu HX. Bioassay and ultraperformance liquid chromatography/mass spectrometry guided isolation of apoptosis-inducing benzophenones and xanthone from the pericarp of Garcinia yunnanensis Hu. J Agric Food Chem 2008; 56: 11144-11150
  • 35 Yang H, Figueroa M, To S, Baggett S, Jiang B, Basile MJ, Weinstein IB, Kennelly EJ. Benzophenones and biflavonoids from Garcinia livingstonei fruits. J Agric Food Chem 2010; 58: 4749-4755
  • 36 Acuña UM, Figueroa M, Kavalier A, Jancovski N, Basile MJ, Kennelly EJ. Benzophenones and biflavonoids from Rheedia edulis . J Nat Prod 2010; 73: 1775-1779
  • 37 Williams RB, Hoch J, Glass TE, Evans R, Miller JS, Wisse JH, Kingston DG. A novel cytotoxic guttiferone analogue from Garcinia macrophylla from the Suriname rainforest. Planta Med 2003; 69: 864-866
  • 38 Merza J, Mallet S, Litaudon M, Dumontet V, Séraphin D, Richomme P. New cytotoxic guttiferone analogues from Garcinia virgata from New Caledonia. Planta Med 2006; 72: 87-89
  • 39 Pereira IO, Marques MJ, Pavan AL, Codonho BS, Barbiéri CL, Beijo LA, Doriguetto AC, DʼMartin EC, dos Santos MH. Leishmanicidal activity of benzophenones and extracts from Garcinia brasiliensis Mart. Fruits. Phytomedicine 2010; 17: 339-345
  • 40 Sang S, Liao CH, Pan MH, Rosen RT, Lin-Shiau SY, Lin JK, Ho CT. Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol with peroxyl radicals and their antitumor activities. Tetrahedron 2002; 58: 10095-10102
  • 41 Fromentin Y, Grellier P, Wansi JD, Lallemand MC, Buisson D. Yeast-mediated xanthone synthesis through oxidative intramolecular cyclization. Org Lett 2012; 14: 5054-5057
  • 42 Ren Y, Yuan C, Chai HB, Ding Y, Li XC, Ferreira D, Kinghorn AD. Absolute configuration of (−)-gambogic acid, an antitumor agent. J Nat Prod 2011; 74: 460-463
  • 43 Zhang X, Li X, Sun H, Wang X, Zhao L, Gao Y, Liu X, Zhang S, Wang Y, Yang Y, Zeng S, Guo Q, You Q. Garcinia xanthones as orally active antitumor agents. J Med Chem 2013; 56: 276-292
  • 44 Baslas RK, Kumar P. Isolation and characterization of biflavanone and xanthones in the fruits of Garcinia xanthochymus . Acta Ciencia Indica Chemistry 1981; 7: 31-34
  • 45 Bittrich V, Nascimento-Junior JE, Amaral MCE, Nogueira PC. The anther oil of Symphonia globulifera L.f. (Clusiaceae). Biochem Syst Ecol 2013; 49: 131-134
  • 46 Atkinson JE, Gupta P, Lewis JR. Benzophenone participation in xanthone biosynthesis (Gentianaceae). Chem Comm 1968; 1386-1387
  • 47 Camm EL, Towers GHN. Phenylalanine ammonia lyase. Phytochemistry 1973; 12: 961-973
  • 48 Sutter A, Grisebach H. Biosynthesis of flavonoids – XXXIV. Occurrence of the “NIH-SHIFT” in flavonoid biosynthesis. Phytochemistry 1969; 8: 101-106
  • 49 Ali MA, Kagan J. The biosynthesis of flavonoid pigments: on the incorporation of phloroglucinol and phloroglucinol cinnamate into rutin in Fagopyrum esculentum . Phytochemistry 1974; 13: 1479-1482
  • 50 Schröder J, Raiber S, Berger T, Schmidt A, Schmidt J, Soares-Sello AM, Bardshiri E, Strack D, Simpson TJ, Veit M, Schröder G. Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones. Biochemistry 1998; 37: 8417-8425
  • 51 Li X, Park NI, Xu H, Woo SH, Park CH, Park SU. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum). J Agric Food Chem 2010; 58: 12176-12181
  • 52 Halbwirth H, Puhl I, Haas U, Jezik K, Treutter D, Stich K. Two-phase flavonoid formation in developing strawberry (Fragaria x ananassa) fruit. J Agric Food Chem 2006; 54: 1479-1485
  • 53 Yamaguchi LF, Kato MJ. Diurnal and seasonal changes in biflavonoids biosynthesis in Araucaria angustifolia needles. Glob J Biochem 2012; 3: 9-12
  • 54 Molyneux RJ, Waiss ACJ, Haddon WF. Oxidative coupling of apigenin. Tetrahedron 1970; 26: 1409-1416
  • 55 Beerhues L, Liu B. Biosynthesis of biphenyls and benzophenones – evolution of benzoic acid-specific type III polyketide synthases in plants. Phytochemistry 2009; 70: 1719-1727
  • 56 Fujita M, Inoue T. Biosynthesis of mangiferin in Anemarrhena asphodeloides: intact incorporation of C6–C3 precursor into xanthone. Tet Lett 1977; 51: 4503-4506
  • 57 Fujita M, Inoue T. Further studies on the biosynthesis of mangiferin in Anemarrhena asphodeloides: hydroxilation of the shikimate-derived ring. Phytochemistry 1981; 20: 2183-2185
  • 58 Nualkaew N, Morita H, Shimokawa Y, Kinjo K, Kushiro T, De-Eknamkul W, Ebizuka Y, Abe I. Benzophenone synthase from Garcinia mangostana L. pericarps. Phytochemistry 2012; 77: 60-69
  • 59 Masters KS, Bräse S. Xanthones from fungi, lichens, and bacteria: the natural products and their synthesis. Chem Rev 2012; 112: 3717-3776
  • 60 Hill JG, Nakashima TT, Vederas JC. Fungal xanthone biosynthesis. Distribution of acetate-derived oxygens in ravenelin. J Am Chem Soc 1982; 104: 1745-1748
  • 61 Peters S, Schmidt W, Beerhues L. Regioselective oxidative phenol couplings of 2, 3′,4, 6-tetrahydroxybenzophenone in cell cultures of Centaurium erythraea RAFN and Hypericum androsaemum L. Planta 1998; 204: 64-69
  • 62 Atkinson JE, Lewis JR. Oxidative coupling. Part VII. Biogenetic type synthesis of naturally occurring xanthones. J Chem Soc C 1969; 281-287
  • 63 Adam P, Arigoni D, Bacher A, Eisenreich W. Biosynthesis of hyperforin in Hypericum perforatum . J Med Chem 2002; 45: 4786-4793
  • 64 Boubakir Z, Beuerle T, Liu B, Beerhues L. The first prenylation step in hyperforin biosynthesis. Phytochemistry 2005; 66: 51-57
  • 65 Karppinen K, Hokkanen J, Tolonen A, Mattila S, Hohtola A. Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum . Phytochemistry 2007; 68: 1038-1045
  • 66 George JH, Hesse MD, Baldwin JE, Adlington RM. Biomimetic synthesis of polycyclic polyprenylated acylphloroglucinol natural products isolated from Hypericum papuanum . Org Lett 2010; 12: 3532-3535
  • 67 Nguyen LTT, Nguyen HT, Barbič M, Brunner G, Heilmann J, Pham HD, Nguyen DM, Nguyen LHD. Polyisoprenylated acylphloroglucinols and a polyisoprenylated tetracyclic xanthone from the bark of Calophyllum thorelii . Tet Lett 2012; 53: 4487-4493
  • 68 Sang S, Liao CH, Pan MH, Rosen RT, Lin-Shiau SY, Lin JK, Ho CT. Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol and theirs antitumor activities. Tetrahedron 2001; 57: 9931-9938
  • 69 Lenta BN, Vonthron-Sénécheau C, Fongang Soh R, Tantangmo F, Ngouela S, Kaiser M, Tsamo E, Anton R, Weniger B. In vitro antiprotozoal activities and cytotoxicity of some selected Cameroonian medicinal plants. J Ethnopharmacol 2007; 11: 8-12
  • 70 Wang J, Hudson R, Sintim HO. Inhibitors of fatty acid synthesis in prokaryotes and eukaryotes as anti-infective, anticancer and anti-obesity drugs. Future Med Chem 2012; 4: 1113-1151
  • 71 Zhao XJ, McElhaney-Feser GE, Sheridan MJ, Broedel SE JR, Cihlar RL. Avirulence of Candida albicans FAS2 mutants in a mouse model of systemic candidiasis. Infect Immun 1997; 65: 829-832
  • 72 Liu H, Liu JY, Wu X, Zhang JT. Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker. Int J Biochem Mol Biol 2010; 1: 69-89
  • 73 Smith S. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J 1994; 8: 1248-1259
  • 74 Lin SK. Rapid detoxification of benzodiazepine or Z-drugs dependence using acetylcholinesterase inhibitors. Med Hypotheses 2014; 83: 108-110
  • 75 Silva T, Reis J, Teixeira J, Borges F. Alzheimerʼs disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev 2014; 15: 116-145
  • 76 Fromentin Y, Gaboriaud-Kolar N, Lenta BN, Wansi JD, Buisson D, Mouray E, Grellier P, Loiseau PM, Lallemand MC, Michel S. Synthesis of novel guttiférone A derivatives: in-vitro evaluation toward Plasmodium falciparum, Trypanosoma brucei and Leishmania donovani . Eur J Med Chem 2013; 65: 284-294