Subscribe to RSS
DOI: 10.1055/s-0029-1218360
Enantiopure Dicyclopropanes from trans-Cyclohexadienediols
Publication History
Publication Date:
11 November 2009 (online)
Abstract
The protecting-group-induced highly regio- and enantioselective syntheses of dicyclopropanated building blocks starting from microbially produced trans-2,3-dihydroxy-2,3-dihydrobenzoic acid are described. Key to the success was a two-step cycloaddition-photolysis sequence for the second cyclopropanation. The structure of the unexpected inverse [3+2]-cycloaddition product of the 1,3-dipolar cycloaddition was verified.
Key words
asymmetric synthesis - stereoselectivity - trans-cyclohexadienediol - cyclopropanes - 1,3-dipolar cycloaddition
-
1a
Carless HAJ. Tetrahedron: Asymmetry 1992, 3: 795 -
1b
Boyd DR.Sheldrake GN. Nat. Prod. Rep. 1998, 15: 309 -
1c
Hudlicky T.Gonzalez D.Gibson DT. Aldrichimica Acta 1999, 32: 35 -
1d
Johnson RA. Org. React. 2004, 63: 117 -
1e
Hudlicky T.Reed JW. Synlett 2009, 685 -
2a
Shie J.-J.Fang J.-M.Wong C.-H. Angew. Chem. Int. Ed. 2008, 47: 5788 ; Angew. Chem. 2008, 120, 5872 -
2b
Matveenko M.Willis AC.Banwell MG. Tetrahedron Lett. 2008, 49: 7018 -
2c
Sullivan B.Carrera I.Drouin M.Hudlicky T. Angew. Chem. Int. Ed. 2008, 48: 4229 ; Angew. Chem. 2009, 121, 4293 - 3
Omori AT.Finn KJ.Leisch H.Carroll RJ.Hudlicky T. Synlett 2007, 2859 - 4
Ley SV.Redgrave AJ. Synlett 1990, 393 - 5
Banwell MG.Austin KAB.Willis AC. Tetrahedron 2007, 63: 6388 -
6a
Hudlicky T.Seoane G.Pettus T. J. Org. Chem. 1989, 54: 4239 -
6b
Pearson AJ.Gelormini AM.Pinkerton AA. Organometallics 1992, 11: 936 -
6c
McKibben BP.Barnosky GS.Hudlicky T. Synlett 1995, 806 -
6d
Boyd DR.Sharma ND.Dalton H.Clarke DA. Chem. Commun. 1996, 45 -
6e
Boyd DR.Sharma ND.O’Dowd CR.Hempenstall F. Chem. Commun. 2000, 2151 -
6f
Boyd DR.Sharma ND.Llamas NM.Coen GP.McGeehin PKM.Allen CCR. Org. Biomol. Chem. 2007, 5: 514 -
7a
DeMarinis RM.Filer CN.Waraszkiewicz SM.Berchtold GA. J. Am. Chem. Soc. 1974, 96: 1193 -
7b
Demuth MR.Garrett PE.White JD. J. Am. Chem. Soc. 1976, 98: 634 -
7c
Holbert GW.Ganem B. J. Am. Chem. Soc. 1978, 100: 352 -
7d
Schlessinger RH.Lopes A. J. Org. Chem. 1981, 46: 5252 -
7e
Ogawa S.Takagaki T. J. Org. Chem. 1985, 50: 2356 -
7f
Shing TKM.Tam EKW. Tetrahedron: Asymmetry 1996, 7: 353 -
7g
Trost BM.Chupak LS.Lübbers T. J. Am. Chem. Soc. 1998, 120: 1732 - 8
Franke D.Sprenger GA.Müller M. Angew. Chem. Int. Ed. 2001, 40: 555 ; Angew. Chem. 2001, 113, 578 - 9
Franke D.Lorbach V.Esser S.Dose C.Sprenger GA.Halfar M.Thömmes J.Müller R.Takors R.Müller M. Chem. Eur. J. 2003, 9: 4188 - 10
Lorbach V.Franke D.Nieger M.Müller M. Chem. Commun. 2002, 494 - Review on oligocyclopropanes:
-
11a Reviews on cyclopropanations:
Pietruszka J. Chem. Rev. 2003, 103: 1051 -
11b
Pellissier H. Tetrahedron 2008, 64: 7041 -
11c Cyclopropanation of cis-cyclohexadienediols yielding monocyclopropanes
in low selectivity:
Lebel H.Marcoux J.-F.Molinaro C.Charette AB. Chem. Rev. 2003, 103: 977 -
11d
Amon CM.Banwell MG.Gravatt GL. J. Org. Chem. 1987, 52: 4851 -
11e
Downing W.Latouche R.Pittol CA.Pryce RJ.Roberts SM.Ryback G.Williams JO. J. Chem. Soc., Perkin Trans. 1 1990, 2613 -
11f
Banwell MG.Forman GS.Hockless DCR. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1996, 52: 1804 - 12
Ley SV.Baeschlin DK.Dixon DJ.Foster AC.Ince SJ.Priepke HWM.Reynolds DJ. Chem. Rev. 2001, 101: 53 - 13
Markó IE.Giard T.Sumida S.Gies A.-E. Tetrahedron Lett. 2002, 43: 2317 -
15a
Muray E.Alvarez-Larena A.Piniella JF.Branchadell V.Ortuno RM. J. Org. Chem. 2000, 65: 388 -
15b
Huisgen R. Angew. Chem., Int. Ed. Engl. 1963, 2: 565 ; Angew. Chem. 1963, 75, 604 -
15c
Houk KN.Sims J.Duke RE.Strozier RW.George JK. J. Am. Chem. Soc. 1973, 95: 7287 -
15d
Houk KN.Sims J.Watts CR.Luskus LJ. J. Am. Chem. Soc. 1973, 95: 7301 -
15e
Bihlmaier W.Geitner J.Huisgen R.Reissig H.-U. Heterocycles 1978, 10: 147 -
15f
Fleming I. Frontier Molecular Orbitals and Organic Chemical Reactions 1st ed.: Wiley; New York: 1976. p.148 - 17 For the safe handling of diazomethane,
see:
Sammakia T.
In Encyclopedia of Reagents for Organic Synthesis John Wiley and Sons; New York: 2001.
References
Crystallographic data for the structures
reported in this paper have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication no. CCDC-745676 (4)
and 745677 (10). Copies of the data can
be obtained free of charge on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK [Fax: +44 (1223)336033;
E-mail:
deposit@ccdc.cam.ac.uk].
[3+2]-Dipolar
Cycloaddition; General Procedure
A freshly prepared
solution of CH2N2
[¹7]
in
Et2O (0.4 M, 10 equiv) was added to a solution of cyclopropane 4 (1 equiv) in dry Et2O (6 mL/equiv).
After 3 d in the dark at r.t. and without stirring, complete conversion
(as judged by TLC) was detected. The excess CH2N2 was
destroyed, and the mixture was concentrated under reduced pressure.
Flash column chromatography on silica gel (eluent: PE-EtOAc, gradient
85:15 to 60:40), provided 9a (84%)
as colourless crystals and 9b (15%)
as colourless oil.
Selected Data of
Regioisomer 9a
¹H NMR (600 MHz,
CDCl3): δ = 0.67
(m, 1 H, 4-Ha), 0.67 (m, 1 H, 3b-H), 0.76 (m, 1 H, 4-Hb),
1.12 (dddd, ³
J
4a,4b = 4.4 Hz, ³
J
4a,4-a = 5.4
Hz, ³
J
4a,3b = 8.5
Hz, ³
J
4a,4-b = 8.5
Hz, 1 H, 4a-H), 1.30 (s, 3 H, 6-CH3), 1.36 (s, 3 H, 7-CH3),
2.59 (dd, ³
J
3a,3-a = 1.3
Hz, ³
J
3a,3-b = 7.6
Hz, 1 H, 3a-H), 3.21 (s, 3 H, 6-OCH3), 3.30 (s, 3 H,
7-OCH3), 3.66 (s, 3 H, CO2CH3),
3.90 (dd, ³
J
4b,4a = 4.4
Hz, ³
J
4b,8a = 10.5
Hz, 1 H, 4b-H), 4.36 (dd, ²
J
3-b,3-a = 17.5
Hz, ³
J
3-b,3a = 7.6
Hz, 1 H, 3-Hb), 4.37 (d, ³
J
8a,4b = 10.5
Hz, 1 H, 8a-H), 4.78 (dd, ²
J
3-a,3-b = 17.5
Hz,
³
J
3-a,3a = 1.3
Hz, 1 H, 3-Ha) ppm. ¹³C
NMR (151 MHz, CDCl3): δ = 7.6
(C-4), 14.7 (C-4a), 16.2 (C-3b), 18.0 (7-CH3), 18.1 (6-CH3),
37.6 (C-3a), 48.0 (6-OCH3), 48.4 (7-OCH3),
53.0 (CO2
CH3),
63.7 (C-4b), 66.5 (C-8a), 84.9 (C-3), 96.9 (C-8b), 100.0 (C-6),
100.9 (C-7), 169.0 (CO2CH3) ppm.
Selected Data of Regioisomer 9b
¹H
NMR (600 MHz, CDCl3): δ = 0.78
(dddd, ²
J
8-a,8-b = 6.3 Hz, ³
J
8-a,7b = 8.2
Hz, ³
J
8-a,8a = 9.4
Hz, 4
J
8-a,7a = 0.6
Hz, 1 H, 8-Ha), 1.00 (ddd, ²
J
8-b,8-a = 6.3
Hz, ³
J
8-b,7b = 5.2
Hz, ³
J
8-b,8a = 6.3
Hz, 1 H, 8-Hb), 1.17 (s, 3 H, 5-CH
3),
1.20 (dddd, ²
J
7b,7a = 3.8
Hz, ³
J
7b,8-b = 5.2
Hz, ³
J
7b,8-a = 8.2
Hz, ³
J
7b,8a = 8.7 Hz,
1 H, 7b-H), 1.24 (s, 3 H, 6-CH
3),
1.86 (dddd, ³
J
8a,8b = 1.2 Hz, ³
J
8a,8-b = 5.4
Hz, ³
J
8a,7b = 8.7
Hz, ³
J
8a,8-a = 9.4
Hz, 1 H, 8a-H), 3.16 (s, 3 H, 5-OCH3), 3.18 (s, 3 H,
6-OCH3), 3.66 (s, 3 H, CO2CH3),
3.66 (ddd, ³
J
7a,7b = 3.8
Hz, ³
J
7a,3b = 10.4
Hz, 4
J
7a,8-a = 0.6
Hz, 1 H, 7a-H), 4.25 (d, ³
J
3b,7a = 10.4
Hz, 1 H, 3b-H), 4.86 (dd, ²
J
3-b,3-a = 19.4
Hz, 4
J
3-b,8b = 3.0
Hz, 1 H, 3-Hb), 5.03 (ddd, ³
J
8b,8a = 1.2
Hz, 4
J
8b,3-a = 1.1
Hz, 4
J
8b,3-b = 3.0 Hz,
1 H, 8b-H), 5.13 (dd, ²
J
3-a,3-b = 19.4
Hz, 4
J
3-a,8b = 1.1
Hz, 1 H, 3-Ha) ppm. ¹³C
NMR (151 MHz, CDCl3): δ = 5.3
(C-8), 13.5 (C-8a), 14.4 (C-7b), 17.7 (6-CH3), 17.9 (5-CH3),
48.1 (5-OCH3), 48.2 (6-OCH3), 50.0 (C-3a),
53.0 (CO2
CH3),
63.9 (C-7a), 65.7 (C-3b), 82.1 (C-3), 92.3 (C-8b), 99.8 (C-6), 100.2
(C-5), 173 (CO2CH3)
ppm.