Synlett 2009(20): 3271-3274  
DOI: 10.1055/s-0029-1218360
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantiopure Dicyclopropanes from trans-Cyclohexadienediols

Tobias Hausmann, Jörg Pietruszka*
Institut für Bioorganische Chemie, Heinrich-Heine Universität Düsseldorf im Forschungszentrum Jülich, Stetternicher Forst Geb. 15.8, 52426 Jülich, Germany
Fax: +49(2461)616196; e-Mail: j.pietruszka@fz-juelich.de;
Further Information

Publication History

Received 2 October 2009
Publication Date:
11 November 2009 (online)

Abstract

The protecting-group-induced highly regio- and enantioselective syntheses of dicyclopropanated building blocks starting from microbially produced trans-2,3-dihydroxy-2,3-dihydrobenzoic acid are described. Key to the success was a two-step cycloaddition-photolysis sequence for the second cyclopropanation. The structure of the unexpected inverse [3+2]-cycloaddition product of the 1,3-dipolar cycloaddition was verified.

    References

  • 1a Carless HAJ. Tetrahedron: Asymmetry  1992,  3:  795 
  • 1b Boyd DR. Sheldrake GN. Nat. Prod. Rep.  1998,  15:  309 
  • 1c Hudlicky T. Gonzalez D. Gibson DT. Aldrichimica Acta  1999,  32:  35 
  • 1d Johnson RA. Org. React.  2004,  63:  117 
  • 1e Hudlicky T. Reed JW. Synlett  2009,  685 
  • 2a Shie J.-J. Fang J.-M. Wong C.-H. Angew. Chem. Int. Ed.  2008,  47:  5788 ; Angew. Chem. 2008, 120, 5872
  • 2b Matveenko M. Willis AC. Banwell MG. Tetrahedron Lett.  2008,  49:  7018 
  • 2c Sullivan B. Carrera I. Drouin M. Hudlicky T. Angew. Chem. Int. Ed.  2008,  48:  4229 ; Angew. Chem. 2009, 121, 4293
  • 3 Omori AT. Finn KJ. Leisch H. Carroll RJ. Hudlicky T. Synlett  2007,  2859 
  • 4 Ley SV. Redgrave AJ. Synlett  1990,  393 
  • 5 Banwell MG. Austin KAB. Willis AC. Tetrahedron  2007,  63:  6388 
  • 6a Hudlicky T. Seoane G. Pettus T. J. Org. Chem.  1989,  54:  4239 
  • 6b Pearson AJ. Gelormini AM. Pinkerton AA. Organometallics  1992,  11:  936 
  • 6c McKibben BP. Barnosky GS. Hudlicky T. Synlett  1995,  806 
  • 6d Boyd DR. Sharma ND. Dalton H. Clarke DA. Chem. Commun.  1996,  45 
  • 6e Boyd DR. Sharma ND. O’Dowd CR. Hempenstall F. Chem. Commun.  2000,  2151 
  • 6f Boyd DR. Sharma ND. Llamas NM. Coen GP. McGeehin PKM. Allen CCR. Org. Biomol. Chem.  2007,  5:  514 
  • 7a DeMarinis RM. Filer CN. Waraszkiewicz SM. Berchtold GA. J. Am. Chem. Soc.  1974,  96:  1193 
  • 7b Demuth MR. Garrett PE. White JD. J. Am. Chem. Soc.  1976,  98:  634 
  • 7c Holbert GW. Ganem B. J. Am. Chem. Soc.  1978,  100:  352 
  • 7d Schlessinger RH. Lopes A. J. Org. Chem.  1981,  46:  5252 
  • 7e Ogawa S. Takagaki T. J. Org. Chem.  1985,  50:  2356 
  • 7f Shing TKM. Tam EKW. Tetrahedron: Asymmetry  1996,  7:  353 
  • 7g Trost BM. Chupak LS. Lübbers T. J. Am. Chem. Soc.  1998,  120:  1732 
  • 8 Franke D. Sprenger GA. Müller M. Angew. Chem. Int. Ed.  2001,  40:  555 ; Angew. Chem. 2001, 113, 578
  • 9 Franke D. Lorbach V. Esser S. Dose C. Sprenger GA. Halfar M. Thömmes J. Müller R. Takors R. Müller M. Chem. Eur. J.  2003,  9:  4188 
  • 10 Lorbach V. Franke D. Nieger M. Müller M. Chem. Commun.  2002,  494 
  • Review on oligocyclopropanes:
  • 11a Reviews on cyclopropanations: Pietruszka J. Chem. Rev.  2003,  103:  1051 
  • 11b Pellissier H. Tetrahedron  2008,  64:  7041 
  • 11c Cyclopropanation of cis-cyclohexadienediols yielding monocyclopropanes in low selectivity: Lebel H. Marcoux J.-F. Molinaro C. Charette AB. Chem. Rev.  2003,  103:  977 
  • 11d Amon CM. Banwell MG. Gravatt GL. J. Org. Chem.  1987,  52:  4851 
  • 11e Downing W. Latouche R. Pittol CA. Pryce RJ. Roberts SM. Ryback G. Williams JO. J. Chem. Soc., Perkin Trans. 1  1990,  2613 
  • 11f Banwell MG. Forman GS. Hockless DCR. Acta Crystallogr., Sect. C: Cryst. Struct. Commun.  1996,  52:  1804 
  • 12 Ley SV. Baeschlin DK. Dixon DJ. Foster AC. Ince SJ. Priepke HWM. Reynolds DJ. Chem. Rev.  2001,  101:  53 
  • 13 Markó IE. Giard T. Sumida S. Gies A.-E. Tetrahedron Lett.  2002,  43:  2317 
  • 15a Muray E. Alvarez-Larena A. Piniella JF. Branchadell V. Ortuno RM. J. Org. Chem.  2000,  65:  388 
  • 15b Huisgen R. Angew. Chem., Int. Ed. Engl.  1963,  2:  565 ; Angew. Chem. 1963, 75, 604
  • 15c Houk KN. Sims J. Duke RE. Strozier RW. George JK. J. Am. Chem. Soc.  1973,  95:  7287 
  • 15d Houk KN. Sims J. Watts CR. Luskus LJ. J. Am. Chem. Soc.  1973,  95:  7301 
  • 15e Bihlmaier W. Geitner J. Huisgen R. Reissig H.-U. Heterocycles  1978,  10:  147 
  • 15f Fleming I. Frontier Molecular Orbitals and Organic Chemical Reactions   1st ed.:  Wiley; New York: 1976.  p.148 
  • 17 For the safe handling of diazomethane, see: Sammakia T.
    In Encyclopedia of Reagents for Organic Synthesis   John Wiley and Sons; New York: 2001. 
14

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-745676 (4) and 745677 (10). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: +44 (1223)336033;
E-mail: deposit@ccdc.cam.ac.uk].

16

[3+2]-Dipolar Cycloaddition; General Procedure
A freshly prepared solution of CH2N2 [¹7] in Et2O (0.4 M, 10 equiv) was added to a solution of cyclopropane 4 (1 equiv) in dry Et2O (6 mL/equiv). After 3 d in the dark at r.t. and without stirring, complete conversion (as judged by TLC) was detected. The excess CH2N2 was destroyed, and the mixture was concentrated under reduced pressure. Flash column chromatography on silica gel (eluent: PE-EtOAc, gradient 85:15 to 60:40), provided 9a (84%) as colourless crystals and 9b (15%) as colourless oil.
Selected Data of Regioisomer 9a
¹H NMR (600 MHz, CDCl3): δ = 0.67 (m, 1 H, 4-Ha), 0.67 (m, 1 H, 3b-H), 0.76 (m, 1 H, 4-Hb), 1.12 (dddd, ³ J 4a,4b = 4.4 Hz, ³ J 4a,4-a = 5.4 Hz, ³ J 4a,3b = 8.5 Hz, ³ J 4a,4-b = 8.5 Hz, 1 H, 4a-H), 1.30 (s, 3 H, 6-CH3), 1.36 (s, 3 H, 7-CH3), 2.59 (dd, ³ J 3a,3-a = 1.3 Hz, ³ J 3a,3-b = 7.6 Hz, 1 H, 3a-H), 3.21 (s, 3 H, 6-OCH3), 3.30 (s, 3 H, 7-OCH3), 3.66 (s, 3 H, CO2CH3), 3.90 (dd, ³ J 4b,4a = 4.4 Hz, ³ J 4b,8a = 10.5 Hz, 1 H, 4b-H), 4.36 (dd, ² J 3-b,3-a = 17.5 Hz, ³ J 3-b,3a = 7.6 Hz, 1 H, 3-Hb), 4.37 (d, ³ J 8a,4b = 10.5 Hz, 1 H, 8a-H), 4.78 (dd, ² J 3-a,3-b = 17.5 Hz, ³ J 3-a,3a = 1.3 Hz, 1 H, 3-Ha) ppm. ¹³C NMR (151 MHz, CDCl3): δ = 7.6 (C-4), 14.7 (C-4a), 16.2 (C-3b), 18.0 (7-CH3), 18.1 (6-CH3), 37.6 (C-3a), 48.0 (6-OCH3), 48.4 (7-OCH3), 53.0 (CO2 CH3), 63.7 (C-4b), 66.5 (C-8a), 84.9 (C-3), 96.9 (C-8b), 100.0 (C-6), 100.9 (C-7), 169.0 (CO2CH3) ppm.
Selected Data of Regioisomer 9b ¹H NMR (600 MHz, CDCl3): δ = 0.78 (dddd, ² J 8-a,8-b = 6.3 Hz, ³ J 8-a,7b = 8.2 Hz, ³ J 8-a,8a = 9.4 Hz, 4 J 8-a,7a = 0.6 Hz, 1 H, 8-Ha), 1.00 (ddd, ² J 8-b,8-a = 6.3 Hz, ³ J 8-b,7b = 5.2 Hz, ³ J 8-b,8a = 6.3 Hz, 1 H, 8-Hb), 1.17 (s, 3 H, 5-CH 3), 1.20 (dddd, ² J 7b,7a = 3.8 Hz, ³ J 7b,8-b = 5.2 Hz, ³ J 7b,8-a = 8.2 Hz, ³ J 7b,8a = 8.7 Hz, 1 H, 7b-H), 1.24 (s, 3 H, 6-CH 3), 1.86 (dddd, ³ J 8a,8b = 1.2 Hz, ³ J 8a,8-b = 5.4 Hz, ³ J 8a,7b = 8.7 Hz, ³ J 8a,8-a = 9.4 Hz, 1 H, 8a-H), 3.16 (s, 3 H, 5-OCH3), 3.18 (s, 3 H, 6-OCH3), 3.66 (s, 3 H, CO2CH3), 3.66 (ddd, ³ J 7a,7b = 3.8 Hz, ³ J 7a,3b = 10.4 Hz, 4 J 7a,8-a = 0.6 Hz, 1 H, 7a-H), 4.25 (d, ³ J 3b,7a = 10.4 Hz, 1 H, 3b-H), 4.86 (dd, ² J 3-b,3-a = 19.4 Hz, 4 J 3-b,8b = 3.0 Hz, 1 H, 3-Hb), 5.03 (ddd, ³ J 8b,8a = 1.2 Hz, 4 J 8b,3-a = 1.1 Hz, 4 J 8b,3-b = 3.0 Hz, 1 H, 8b-H), 5.13 (dd, ² J 3-a,3-b = 19.4 Hz, 4 J 3-a,8b = 1.1 Hz, 1 H, 3-Ha) ppm. ¹³C NMR (151 MHz, CDCl3): δ = 5.3 (C-8), 13.5 (C-8a), 14.4 (C-7b), 17.7 (6-CH3), 17.9 (5-CH3), 48.1 (5-OCH3), 48.2 (6-OCH3), 50.0 (C-3a), 53.0 (CO2 CH3), 63.9 (C-7a), 65.7 (C-3b), 82.1 (C-3), 92.3 (C-8b), 99.8 (C-6), 100.2 (C-5), 173 (CO2CH3) ppm.