Methods Inf Med 2014; 53(06): 469-481
DOI: 10.3414/ME14-01-0007
Original Articles
Schattauer GmbH

ANTONIA Perfusion and Stroke

A Software Tool for the Multi-purpose Analysis of MR Perfusion-weighted Datasets and Quantitative Ischemic Stroke Assessment
N. D. Forkert
1   Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
B. Cheng
2   Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
A. Kemmling
1   Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
G. Thomalla
2   Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
J. Fiehler
1   Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
› Author Affiliations
Further Information

Publication History

received: 18 January 2014

accepted: 11 June 2014

Publication Date:
20 January 2018 (online)

Summary

Objectives: The objective of this work is to present the software tool ANTONIA, which has been developed to facilitate a quantitative analysis of perfusion-weighted MRI (PWI) datasets in general as well as the subsequent multi-parametric analysis of additional datasets for the specific purpose of acute ischemic stroke patient dataset evaluation.

Methods: Three different methods for the analysis of DSC or DCE PWI datasets are currently implemented in ANTONIA, which can be case-specifically selected based on the study protocol. These methods comprise a curve fitting method as well as a deconvolution-based and deconvolution-free method integrating a previously defined arterial input function. The perfusion analysis is extended for the purpose of acute ischemic stroke analysis by additional methods that enable an automatic atlas-based selection of the arterial input function, an analysis of the perfusion-diffusion and DWI-FLAIR mismatch as well as segmentation-based volumetric analyses.

Results: For reliability evaluation, the de-scribed software tool was used by two ob-servers for quantitative analysis of 15 data-sets from acute ischemic stroke patients to extract the acute lesion core volume, FLAIR ratio, perfusion-diffusion mismatch volume with manually as well as automatically selected arterial input functions, and follow-up lesion volume. The results of this evaluation revealed that the described software tool leads to highly reproducible results for all parameters if the automatic arterial input function selection method is used.

Conclusion: Due to the broad selection of processing methods that are available in the software tool, ANTONIA is especially helpful to support image-based perfusion and acute ischemic stroke research projects.

 
  • References

  • 1 Thomalla GJ, Kucinski T, Schoder V, Fiehler J, Knab R, Zeumer H. et al. Prediction of malignant middle cerebral artery infarction by early perfusion- and diffusion-weighted magnetic resonance imaging. Stroke 2003; 34 (08) 1892-1899.
  • 2 Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 2006; 239 (03) 632-649.
  • 3 Ge Y, Law M, Johnson G, Herbert J, Babb JS, Mannon LJ. et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol 2005; 26 (06) 1539-1547.
  • 4 Thng CH, Koh TS, Collins DJ, Koh DM. Perfusion magnetic resonance imaging of the liver. World J Gastroenterol 2010; 16 (13) 1598-1609.
  • 5 Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 2002; 29 (05) 886-897.
  • 6 Remus CC, Sedlacik J, Wedegaertner U, Arck P, Hecher K, Adam G. et al. Application of the steepest slope model reveals different perfusion territories within the mouse placenta. Placenta 2013; 34 (10) 899-906.
  • 7 Forkert ND, Kaesemann P, Treszl A, Siemonsen S, Cheng B, Handels H. et al. Comparison of 10 TTP and Tmax Estimation Techniques for MR Perfusion-Diffusion Mismatch Quantification in Acute Stroke. AJNR Am J Neuroradiol 2013; 34 (09) 1697-1703.
  • 8 Wu O, Koroshetz WJ, Ostergaard L, Buonanno FS, Copen WA, Gonzalez RG. et al. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke 2001; 32 (04) 933-942.
  • 9 Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, Wu O. et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol 2011; 10 (11) 978-986.
  • 10 Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996; 36 (05) 715-725.
  • 11 Kjolby BF, Ostergaard L, Kiselev VG. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 2006; 56 (01) 187-197.
  • 12 Thompson Jr. HK, Starmer CF, Whalen RE, McIntosh HD. Indicator Transit Time Considered as a Gamma Variate. Circ Res 1964; 14: 502-515.
  • 13 Band DM, Linton RA, O’Brien TK, Jonas MM, Linton NW. The shape of indicator dilution curves used for cardiac output measurement in man. J Physiol 1997; 498 (Pt 1) 225-229.
  • 14 Forkert ND, Fiehler J, Ries T, Illies T, Moller D, Handels H. et al. Reference-based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusion-weighted image sequences. Magn Reson Med 2011; 65 (01) 289-294.
  • 15 Bogaard JM, Jansen JR, von Reth EA, Versprille A, Wise ME. Random walk type models for indicator-dilution studies: comparison of a local density random walk and a first passage times distribution. Cardiovasc Res 1986; 20 (11) 789-796.
  • 16 Benner T, Heiland S, Erb G, Forsting M, Sartor K. Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise. Magn Reson Imaging 1997; 15 (03) 307-317.
  • 17 Li X, Tian J, Millard RK. Erroneous and inappropriate use of gamma fits to tracer-dilution curves in magnetic resonance imaging and nuclear medicine. Magn Reson Imaging 2003; 21 (09) 1095-1096.
  • 18 Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954; 6 (12) 731-744.
  • 19 Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med 1996; 36 (05) 726-736.
  • 20 Fieselmann A, Kowarschik M, Ganguly A, Hornegger J, Fahrig R. Deconvolution-Based CT and MR Brain Perfusion Measurement: Theoretical Model Revisited and Practical Implementation Details. Int J Biomed Imaging 2011 2011: 467563
  • 21 Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003; 50 (01) 164-174.
  • 22 Miles KA. Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol 1991; 64: 409-412.
  • 23 Brix G, Zwick S, Griebel J, Fink CFK. Estimation of tissue perfusion by dynamic contrast-enhanced imaging: simulation-based evaluation of the steepest slope method. Eur Radiol 2010; 20 (09) 2166-2175.
  • 24 Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R. 3rd. Multi-modal volume registration by maximization of mutual information. Med Image Anal 1996; 1 (01) 35-51.
  • 25 Stejskal E, Tanner J. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. Journal of Chemical Physics 1965; 42 (01) 288-292.
  • 26 Siemonsen S, Lobel U, Sedlacik J, Forkert ND, Mouridsen K, Ostergaard L. et al. Elevated T2-values in MRI of stroke patients shortly after symptom onset do not predict irreversible tissue infarction. Brain 2012; 135 (Pt 6) 1981-1989.
  • 27 Ma H, Parsons MW, Christensen S, Campbell BCV, Churilov L, Connelly A. et al. A multicentre, randomized, double-blinded, placebo-controlled Phase III study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits (EXTEND). Int J Stroke 2012; 7 (01) 74-80.
  • 28 Forkert ND, Fiehler J, Suniaga S, Wersching H, Knecht S, Kemmling A. A statistical cerebroarterial atlas derived from 700 MRA datasets. Methods Inf Med 2013; 52 (06) 467-74.
  • 29 Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K. et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001; 356 1412 1293-1322.
  • 30 Beck C, Kruetzelmann A, Forkert ND, Juettler E, Singer OC, Kohrmann M. et al. A simple brain atrophy measure improves the prediction of malignant middle cerebral artery infarction by acute DWI lesion volume. J Neurol 2014; 261 (06) 1097-1103.
  • 31 Thomalla G, Fiebach JB, Ostergaard L, Pedraza S, Thijs V, Nighoghossian N. et al. A multicenter, randomized, double-blind, placebo-controlled trial to test efficacy and safety of magnetic resonance imaging-based thrombolysis in wake-up stroke (WAKE-UP) . Int J Stroke 2013
  • 32 Cheng B, Brinkmann M, Forkert ND, Treszl A, Ebinger M, Kohrmann M. et al. Quantitative measurements of relative fluid-attenuated inversion recovery (FLAIR) signal intensities in acute stroke for the prediction of time from symptom onset. J Cereb Blood Flow Metab 2013; 33 (01) 76-84.
  • 33 Cheng B, Rosenkranz M, Krutzelmann A, Fiehler J, Forkert ND, Gerloff C. et al. The extent of perfusion deficit does not relate to the visibility of acute ischemic lesions on fluid-attenuated inversion recovery imaging. J Neuroimaging 2013; 23 (02) 215-218.
  • 34 Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 2010; 32 (05) 1024-1037.
  • 35 Kosior JC, Frayne R. PerfTool: a software platform for investigating bolus-tracking perfusion imaging quantification strategies. J Magn Reson Imaging 2007; 25 (03) 653-659.
  • 36 Wintermark M, Albers GW, Alexandrov AV, Alger JR, Bammer R, Baron JC. et al. Acute stroke imaging research roadmap. Stroke 2008; 39 (05) 1621-1628.
  • 37 Christensen S, Mouridsen K, Wu O, Hjort N, Karstoft H, Thomalla G. et al. Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke 2009; 40 (06) 2055-2061.
  • 38 Ebinger M, Brunecker P, Jungehulsing GJ, Malzahn U, Kunze C, Endres M. et al. Reliable perfusion maps in stroke MRI using arterial input functions derived from distal middle cerebral artery branches. Stroke 2010; 41 (01) 95-101.
  • 39 Willats L, Christensen S, Ma HK, Donnan GA, Connelly A, Calamante F. Validating a local Arterial Input Function method for improved perfusion quantification in stroke. J Cereb Blood Flow Metab 2011; 31 (11) 2189-2198.
  • 40 Gottrup C, Thomsen K, Locht P, Wu O, Sorensen AG, Koroshetz WJ. et al. Applying instance-based techniques to prediction of final outcome in acute stroke. Artif Intell Med 2005; 33 (03) 223-236.
  • 41 Kidwell CS, Wintermark M, De Silva DA, Schaewe TJ, Jahan R, Starkman S. et al. Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke. Stroke 2013; 44 (01) 73-79.
  • 42 Bagher-Ebadian H, Jafari-Khouzani K, Mitsias PD, Lu M, Soltanian-Zadeh H, Chopp M. et al. Predicting final extent of ischemic infarction using artificial neural network analysis of multi-parametric MRI in patients with stroke. PLoS One 2011; 6 (08) e22626
  • 43 Lu M, Mitsias PD, Ewing JR, Soltanian-Zadeh H, Bagher-Ebadian H, Zhao Q. et al. Predicting final infarct size using acute and subacute multiparametric MRI measurements in patients with ischemic stroke. J Magn Reson Imaging 2005; 21 (05) 495-502.
  • 44 Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997; 7 (01) 91-101.