Thromb Haemost 2014; 111(05): 902-911
DOI: 10.1160/TH13-06-0476
Platelets and Blood Cells
Schattauer GmbH

Controlled type II diabetes mellitus has no major influence on platelet micro-RNA expression

Results from micro-array profiling in a cohort of 60 patients
Christian Stratz
1   Universitäts-Herzzentrum Freiburg – Bad Krozingen, Abteilung für Kardiologie und Angiologie II, Bad Krozingen, Germany
,
Thomas Nührenberg
1   Universitäts-Herzzentrum Freiburg – Bad Krozingen, Abteilung für Kardiologie und Angiologie II, Bad Krozingen, Germany
,
Bernd L. Fiebich
1   Universitäts-Herzzentrum Freiburg – Bad Krozingen, Abteilung für Kardiologie und Angiologie II, Bad Krozingen, Germany
4   Department of Psychiatry and Psychotherapy, University Medical Centre Freiburg, Freiburg, Germany
5   VivaCell Biotechnology GmbH, Denzlingen, Germany
,
Michael Amann
1   Universitäts-Herzzentrum Freiburg – Bad Krozingen, Abteilung für Kardiologie und Angiologie II, Bad Krozingen, Germany
,
Asit Kumar
4   Department of Psychiatry and Psychotherapy, University Medical Centre Freiburg, Freiburg, Germany
6   University of Freiburg, Faculty of Biology, Freiburg, Germany
,
Harald Binder
2   Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre Johannes Gutenberg University Mainz, Mainz, Germany
3   Institute of Medical Biometry and Medical Informatics, University Medical Centre Freiburg, Freiburg, Germany
,
Isabell Hoffmann
2   Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre Johannes Gutenberg University Mainz, Mainz, Germany
,
Christian Valina
1   Universitäts-Herzzentrum Freiburg – Bad Krozingen, Abteilung für Kardiologie und Angiologie II, Bad Krozingen, Germany
,
Willibald Hochholzer
1   Universitäts-Herzzentrum Freiburg – Bad Krozingen, Abteilung für Kardiologie und Angiologie II, Bad Krozingen, Germany
,
Dietmar Trenk
1   Universitäts-Herzzentrum Freiburg – Bad Krozingen, Abteilung für Kardiologie und Angiologie II, Bad Krozingen, Germany
,
Franz-Josef Neumann
1   Universitäts-Herzzentrum Freiburg – Bad Krozingen, Abteilung für Kardiologie und Angiologie II, Bad Krozingen, Germany
› Author Affiliations
Further Information

Publication History

Received: 11 June 2013

Accepted after major revision: 22 November 2013

Publication Date:
01 December 2017 (online)

Summary

Diabetes mellitus as a major contributor to cardiovascular disease burden induces dysfunctional platelets. Platelets contain abundant miRNAs, which are linked to inflammatory responses and, thus, may play a role in atherogenesis. While diabetes mellitus affects plasma miRNAs, no data exist on platelet miRNA profiles in this disease. Therefore, this study sought to explore the miRNA profile of platelets in patients with diabetes mellitus that is unrelated to the presence or absence of coronary artery disease (CAD). Platelet miRNA profiles were assessed in stable diabetic and non-diabetic patients (each n=30); 15 patients in each group had CAD. Platelet miRNA was isolated from leucocyte-depleted platelet-rich plasma, and miRNA profiling was performed using LNA micro-array technology (miRBase18.0, containing 1,917 human miRNAs). Effects of diabetes mellitus were explored by univariate statistical tests for each miRNA, adjusted for potential confounders, and by developing a multivariable signature; evaluated by resampling techniques. Platelets in non-diabetic patients demonstrated miRNA expression profiles comparable to previous data. The miRNA profiles of platelets in diabetics were similar. Statistical analysis unveiled three miRNAs (miR-377–5p, miR-628–3p, miR-3137) with high reselection probabilities in resampling techniques, corresponding to signatures with modest discriminatory performance. Functional annotation of predicted targets for these miRNAs pointed towards an influence of diabetes mellitus on mRNA processing. We did not find major differences in platelet miRNA profiles between diabetics and non-diabetics. Minor differences pertained to miRNAs associated with mRNA processing. Thus, described differences in plasma miRNAs between diabetic and non-diabetic patients cannot be explained by plain changes in platelet miRNA profile.

 
  • References

  • 1 Clemetson KJ. Platelets and primary haemostasis. Thromb Res 2012; 129: 220-224.
  • 2 Lievens D, von Hundelshausen P. Platelets in atherosclerosis. Thromb Haemost 2011; 106: 827-838.
  • 3 Stokes KY, Granger DN. Platelets: a critical link between inflammation and microvascular dysfunction. J Physiol 2012; 590: 1023-1034.
  • 4 Hamad OA, Back J, Nilsson PH. et al. Platelets, complement, and contact activation: partners in inflammation and thrombosis. Adv Exp Med Biol 2012; 946: 185-205.
  • 5 Landry P, Plante I, Ouellet DL. et al. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009; 16: 961-966.
  • 6 Stratz C, Nuhrenberg TG, Binder H. et al. Micro-array profiling exhibits remarkable intra-individual stability of human platelet micro-RNA. Thromb Haemost 2012; 107: 634-641.
  • 7 Dangwal S, Thum T. MicroRNAs in platelet biogenesis and function. Thromb Haemost 2012; 108: 599-604.
  • 8 Gatsiou A, Boeckel JN, Randriamboavonjy V. et al. MicroRNAs in Platelet Biogenesis and Function: Implications in Vascular Homeostasis and Inflammation. Curr Vasc Pharmacol 2012; 10: 524-531.
  • 9 Shukla GC, Singh J, Barik S. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol Cell Pharmacol 2011; 03: 83-92.
  • 10 Zampetaki A, Kiechl S, Drozdov I. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107: 810-817.
  • 11 Diehl P, Fricke A, Sander L. et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 2012; 93: 633-644.
  • 12 Zernecke A, Bidzhekov K, Noels H. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 02: ra81.
  • 13 Zampetaki A, Willeit P, Tilling L. et al. Prospective Study on Circulating MicroRNAs and Risk of Myocardial Infarction. J Am Coll Cardiol 2012; 60: 290-299.
  • 14 Kaudewitz D, Lee R, Willeit P. et al. Impact of intravenous heparin on quantification of circulating microRNAs in patients with coronary artery disease. Thromb Haemost 2013; 110: 609-615.
  • 15 Schroeder A, Mueller O, Stocker S. et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006; 07: 3.
  • 16 Ritchie ME, Silver J, Oshlack A. et al. A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007; 23: 2700-2707.
  • 17 Benjamini YH Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Royal Stat Soc 1995; B: 289-300.
  • 18 Tutz G, Binder H. Boosting ridge regression. Comput Stat Data Anal 2007; 6044-6059.
  • 19 Binder H, Schumacher M. Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples. Stat Appl Genet Mol Biol 2008; 07 Article 12.
  • 20 Wang X, El Naqa IM. Prediction of both conserved and nonconserved microR-NA targets in animals. Bioinformatics 2008; 24: 325-332.
  • 21 Wang X. miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 2008; 14: 1012-1017.
  • 22 Huang da W, Sherman BT, Tan Q. et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 2007; 08: R183.
  • 23 Veronelli A, Laneri M, Ranieri R. et al. White blood cells in obesity and diabetes: effects of weight loss and normalization of glucose metabolism. Diabetes Care 2004; 27: 2501-2502.
  • 24 Ohshita K, Yamane K, Hanafusa M. et al. Elevated white blood cell count in subjects with impaired glucose tolerance. Diabetes Care 2004; 27: 491-496.
  • 25 Osman A, Falker K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets 2011; 22: 433-441.
  • 26 Mestdagh P, Feys T, Bernard N. et al. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 2008; 36: e143.
  • 27 Nagalla S, Shaw C, Kong X. et al. Platelet microRNA-mRNA co-expression profiles correlate with platelet reactivity. Blood 2011; 117: 5189-5197.
  • 28 Newman PJ, Gorski J, White 2nd GC. et al. Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction. J Clin Invest 1988; 82: 739-743.
  • 29 Wicki AN, Walz A, Gerber-Huber SN. et al. Isolation and characterization of human blood platelet mRNA and construction of a cDNA library in lambda gt11. Confirmation of the platelet derivation by identification of GPIb coding mRNA and cloning of a GPIb coding cDNA insert. Thromb Haemost 1989; 61: 448-453.
  • 30 Bahou WF. Platelet systems biology using integrated genetic and proteomic platforms. Thromb Res 2012; 129 (Suppl. 01) S38-45.
  • 31 Fish JE, Santoro MM, Morton SU. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008; 15: 272-284.
  • 32 Wang S, Aurora AB, Johnson BA. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008; 15: 261-271.
  • 33 Hunter MP, Ismail N, Zhang X. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 2008; 03: e3694.
  • 34 Zampetaki A, Willeit P, Drozdov I. et al. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res 2012; 93: 555-562.
  • 35 Diamant M, Nieuwland R, Pablo RF. et al. Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 2002; 106: 2442-2447.
  • 36 Chen TS, Lai RC, Lee MM. et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 2010; 38: 215-224.
  • 37 Yuan A, Farber EL, Rapoport AL. et al. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 2009; 04: e4722.
  • 38 Valadi H, Ekstrom K, Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 09: 654-659.
  • 39 Jaiswal R, Luk F, Gong J. et al. Microparticle conferred microRNA profiles - implications in the transfer and dominance of cancer traits. Mol Cancer 2012; 11: 37.
  • 40 Colwell JA, Halushka PV, Sarji K. et al. Altered platelet function in diabetes mellitus. Diabetes 1976; 25: 826-831.
  • 41 O’Malley CB, Ward JD, Timperley WR. et al. Platelet abnormalities in diabetic peripheral neuropathy. Lancet 1975; 02: 1274-1276.
  • 42 Mandal S, Sarode R, Dash S. et al. Hyperaggregation of platelets detected by whole blood platelet aggregometry in newly diagnosed noninsulin-dependent diabetes mellitus. Am J Clin Pathol 1993; 100: 103-107.