Thromb Haemost 2009; 101(06): 1020-1024
DOI: 10.1160/TH08-08-0553
Theme Issue Article
Schattauer GmbH

Talin-dependent integrin signalling in vivo

Brian G. Petrich
1   Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
› Author Affiliations
Financial support: B.G. Petrich is funded by a Scientist Development Grant (0830213N) from the American Heart Association.
Further Information

Publication History

Received: 27 August 2008

Accepted after minor revision: 01 March 2009

Publication Date:
24 November 2017 (online)

Summary

Integrins are heterodimeric adhesion receptors essential for metazoan life. In addition to mediating cell-extracellular matrix and cell-cell interactions, integrins are bona fide signalling receptors in that they transmit information in both directions across the plasma membrane. The affinity of integrins for extracellular ligands is regulated through a process termed integrin activation or “inside-out signalling”. On the other hand, ligand binding to integrins can induce the recruitment and activation of a number of enzymes and adaptors such as pp125FAK and Src family kinases, to initiate “outside-in signalling”. Intensive investigation into the mechanisms of integrin signalling has revealed many of the key players; amongst these, one of the most important is talin. Our understanding of how many of these molecules interact is now understood at the atomic level thanks to detailed structural studies. Indeed structural information and model cell systems have provided unique opportunities to dissect the molecular mechanisms of many aspects of integrin signalling. Recent studies have begun testing the biological significance of these mechanisms using in-vivo models, particular genetically modified mice. The generation and characterisation of in-vivo models to study integrin signalling has provided valuable information into the functional significance of integrin signalling in fundamental physiological processes as well as within the context of human disease. Here, I will review recent insights that have been gained into integrin signalling through the use of genetically modified mice focusing on integrin αIIbβ3 (GPIIb-IIIa) and the regulation of its function in haemostasis and thrombosis.

 
  • References

  • 1 Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673-687.
  • 2 van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res 2001; 305: 285-298.
  • 3 Bouvard D, Brakebusch C, Gustafsson E. et al. Functional consequences of integrin gene mutations in mice. Circ Res 2001; 89: 211-23.
  • 4 De Arcangelis A, Georges-Labouesse E. Integrin and ECM functions: roles in vertebrate development. Trends Genet 2000; 16: 389-395.
  • 5 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 8: 1227-1234.
  • 6 Nurden AT. Inherited abnormalities of platelets. Thromb Haemost 1999; 82: 468-480.
  • 7 Bhatt DL, Topol EJ. Scientific and therapeutic advances in antiplatelet therapy. Nat Rev Drug Discov 2003; 2: 15-28.
  • 8 Quinn MJ, Byzova TV, Qin J. et al. Integrin alphaIIbbeta3 and its antagonism. Arterioscler Thromb Vasc Biol 2003; 23: 945-952.
  • 9 Lammermann T, Bader BL, Monkley SJ. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 2008; 453: 51-55.
  • 10 Luo BH, Springer TA. Integrin structures and conformational signaling. Curr Opin Cell Biol 2006; 18: 579-586.
  • 11 Ratnikov BI, Partridge AW, Ginsberg MH. Integrin activation by talin. J Thromb Haemost 2005; 3: 1783-1790.
  • 12 Banno A, Ginsberg MH. Integrin activation. Biochem Soc Trans 2008; 36: 229-234.
  • 13 Tadokoro S, Shattil SJ, Eto K. et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science 2003; 302: 103-106.
  • 14 Critchley DR, Gingras AR. Talin at a glance. J Cell Sci 2008; 121: 1345-1347.
  • 15 Rees DJ, Ades SE, Singer SJ. et al. Sequence and domain structure of talin. Nature 1990; 347: 685-689.
  • 16 Calderwood DA, Zent R, Grant R. et al. The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 1999; 274: 28071-28074.
  • 17 Garcia-Alvarez B, de Pereda JM, Calderwood DA. et al. Structural determinants of integrin recognition by talin. Mol Cell 2003; 11: 49-58.
  • 18 Calderwood DA, Yan B, de Pereda JM. et al. The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 2002; 277: 21749-21758.
  • 19 Ulmer TS, Calderwood DA, Ginsberg MH. et al. Domain-specific interactions of talin with the membrane-proximal region of the integrin beta3 subunit. Biochemistry 2003; 42: 8307-8312.
  • 20 Wegener KL, Partridge AW, Han J. et al. Structural basis of integrin activation by talin. Cell 2007; 128: 171-182.
  • 21 Wegener KL, Campbell ID. Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (review). Mol Membr Biol 2008; 25: 376-387.
  • 22 Han J, Lim CJ, Watanabe N. et al. Reconstructing and deconstructing agonist-induced activation of inte-grin alphaIIbbeta3. Curr Biol 2006; 16: 1796-1806.
  • 23 Cifuni SM, Wagner DD, Bergmeier W. CalDAGGEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood 2008; 112: 1696-1703.
  • 24 Bergmeier W, Goerge T, Wang HW. et al. Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J Clin Invest 2007; 117: 1699-1707.
  • 25 Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM. et al. Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest 2005; 115: 680-687.
  • 26 Lee HS, Lim CJ, Puzon-McLaughlin W. et al. RIAM activates integrins by linking talin to Ras GTPase membrane-targeting sequences. J Biol Chem 2009; 284: 5119-5127.
  • 27 Watanabe N, Bodin L, Pandey M. et al. Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin alphaIIbbeta3. J Cell Biol 2008; 181: 1211-1222.
  • 28 Kiema T, Lad Y, Jiang P. et al. The molecular basis of filamin binding to integrins and competition with talin. Mol Cell 2006; 21: 337-347.
  • 29 Calderwood DA, Fujioka Y, de Pereda JM. et al. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci USA 2003; 100: 2272-2277.
  • 30 Millon-Fremillon A, Bouvard D, Grichine A. et al. Cell adaptive response to extracellular matrix density is controlled by ICAP-1-dependent beta1-integrin affinity. J Cell Biol 2008; 180: 427-441.
  • 31 Oxley CL, Anthis NJ, Lowe ED. et al. An integrin phosphorylation switch: the effect of beta3 integrin tail phosphorylation on Dok1 and talin binding. J Biol Chem 2008; 283: 5420-5426.
  • 32 Ma YQ, Qin J, Wu C. et al. Kindlin-2 (Mig-2): a co-activator of beta3 integrins. J Cell Biol 2008; 181: 439-446.
  • 33 Montanez E, Ussar S, Schifferer M. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev 2008; 22: 1325-1330.
  • 34 Moser M, Nieswandt B, Ussar S. et al. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 2008; 14: 325-330.
  • 35 Shi X, Ma YQ, Tu Y. et al. The MIG-2/integrin interaction strengthens cell-matrix adhesion and modulates cell motility. J Biol Chem 2007; 282: 20455-20466.
  • 36 Ussar S, Wang HV, Linder S. et al. The Kindlins: subcellular localization and expression during murine development. Exp Cell Res 2006; 312: 3142-3151.
  • 37 Kloeker S, Major MB, Calderwood DA. et al. The Kindler syndrome protein is regulated by transforming growth factor-beta and involved in integrin-mediated adhesion. J Biol Chem 2004; 279: 6824-6833.
  • 38 Brown NH, Gregory SL, Rickoll WL. et al. Talin is essential for integrin function in Drosophila. Dev Cell 2002; 3: 569-579.
  • 39 Cram EJ, Clark SG, Schwarzbauer JE. Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans. J Cell Sci 2003; 116: 3871-3878.
  • 40 Williams BD, Waterston RH. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J Cell Biol 1994; 124: 475-490.
  • 41 Gettner SN, Kenyon C, Reichardt LF. Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans. J Cell Biol 1995; 129: 1127-1141.
  • 42 Brabant MC, Brower DL. PS2 integrin requirements in Drosophila embryo and wing morphogenesis. Dev Biol 1993; 157: 49-59.
  • 43 Brown NH. Null mutations in the alpha PS2 and beta PS integrin subunit genes have distinct pheno-types. Development 1994; 120: 1221-1231.
  • 44 Tanentzapf G, Brown NH. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nat Cell Biol 2006; 8: 601-606.
  • 45 Helsten TL, Bunch TA, Kato H. et al. Differences in regulation of Drosophila and vertebrate integrin affinity by talin. Mol Biol Cell 2008; 19: 3589-3598.
  • 46 Monkley SJ, Zhou XH, Kinston SJ. et al. Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev Dyn 2000; 219: 560-574.
  • 47 Tiedt R, Schomber T, Hao-Shen H. et al. Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood 2007; 109: 1503-1506.
  • 48 Petrich BG, Marchese P, Ruggeri ZM. et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 2007; 204: 3103-3111.
  • 49 Fox NE, Kaushansky K. Engagement of integrin alpha4beta1 enhances thrombopoietin-induced megakaryopoiesis. Exp Hematol 2005; 33: 94-99.
  • 50 Larson MK, Watson SP. Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood 2006; 108: 1509-1514.
  • 51 Mould AP, Akiyama SK, Humphries MJ. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+, and Ca2+. J Biol Chem 1995; 270: 26270-26277.
  • 52 Takagi J, Petre BM, Walz T. et al. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002; 110: 599-511.
  • 53 Nieswandt B, Moser M, Pleines I. et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 2007; 204: 3113-3118.
  • 54 Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 2003; 301: 1720-1725.
  • 55 Kuo JC, Wang WJ, Yao CC. et al. The tumor suppressor DAPK inhibits cell motility by blocking the integrin-mediated polarity pathway. J Cell Biol 2006; 172: 619-631.
  • 56 Sarratt KL, Chen H, Zutter MM. et al. GPVI and alpha2beta1 play independent critical roles during platelet adhesion and aggregate formation to collagen under flow. Blood 2005; 106: 1268-1277.
  • 57 Hodivala-Dilke KM, McHugh KP, Tsakiris DA. et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999; 103: 229-238.
  • 58 Di Paolo G, Pellegrini L, Letinic K. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature 2002; 420: 85-89.
  • 59 Ling K, Doughman RL, Firestone AJ. et al. Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 2002; 420: 89-93.
  • 60 Petrich BG, Fogelstrand P, Partridge AW. et al. The antithrombotic potential of selective blockade of talin-dependent integrin alpha IIb beta 3 (platelet GPIIbIIIa) activation. J Clin Invest 2007; 117: 2250-2259.
  • 61 Jackson SP. The growing complexity of platelet aggregation. Blood 2007; 109: 5087-5095.
  • 62 Chew DP, Bhatt DL, Sapp S. et al. Increased mortality with oral platelet glycoprotein IIb/IIIa antagonists: a meta-analysis of phase III multicenter randomized trials. Circulation 2001; 103: 201-206.