Thromb Haemost 2009; 101(06): 1025-1031
DOI: 10.1160/TH08-08-0552
Theme Issue Article
Schattauer GmbH

Angiostasis as a way to improve immunotherapy

Arjan W. Griffioen
1   Angiogenesis Laboratory, School for Oncology and Developmental Biology (GROW), Dept. of Pathology, Maastricht University, Maastricht, The Netherlands
2   Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
,
Florry A. Vyth-Dreese
3   Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
› Author Affiliations
Further Information

Publication History

Received: 27 August 2008

Accepted after major revision: 13 April 2009

Publication Date:
24 November 2017 (online)

Summary

Tumours express tumour-associated antigens that are recognised as self-antigens precluding the induction of effective anti-tumour immune responses. Inflammatory conditions which facilitate appropriate antigen presentation and reduce the immuno-suppressive micro-milieu may break tolerance. However, tumours have evolved mechanisms to escape cytotoxic T-cell attack by expressing inhibitory molecules on their surface, secreting suppressive factors, attracting regulatory T cells to the tumour environment or downregulating MHC molecules. Induction of angiogenesis by tumours may represent another mechanism by which tumours escape from immune attack. It provides an anti-inflammatory milieu that will prevent appropriate activation and maturation of antigen presenting cells, allow tumours to secrete suppressive factors and inhibit expression of tumour endothelial adhesion receptors, such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin, needed for appropriate interactions with immune cells. Inhibition of angiogenesis may, apart from its direct detrimental effects on the tumour, reverse these processes and contribute to anti-tumour immune reactivity. Without trying to give a complete overview of the field, this paper reviews insights on angio-genesis inhibition in relation to tumour immune responsiveness, mainly based on the Maastricht-Amsterdam experience. This review adds to the hypothesis of improvement of immuno-directed therapies for cancer by angiostasis.

 
  • References

  • 1 Reis e Sousa C. Dendritic cells in a mature age.. Nature reviews 2006; 6: 476-483.
  • 2 Keller AM, Borst J. Control of peripheral T cell survival: a delicate division of labor between cytokines and costimulatory molecules.. Human Immunol 2006; 67: 469-477.
  • 3 Gajewski TF. Failure at the effector phase: immune barriers at the level of the melanoma tumor micro-environment.. Clin Cancer Res 2007; 13: 5256-5261.
  • 4 Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells.. Ann Rev Immunol 2007; 25: 267-296.
  • 5 Folkman J. Antiangiogenesis in cancer therapy--endostatin and its mechanisms of action.. Exp Cell Res 2006; 312: 594-607.
  • 6 Carmeliet P. Angiogenesis in life, disease and medicine.. Nature 2005; 438: 932-936.
  • 7 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease.. Nat Med 1995; 1: 27-31.
  • 8 Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation.. Pharmacol Rev 2000; 52: 237-268.
  • 9 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumori-genesis.. Cell 1996; 86: 353-364.
  • 10 Molema G, Griffioen AW. Rocking the foundations of solid tumor growth by attacking the tumor’s blood supply.. Immunol Today 1998; 19: 392-394.
  • 11 Griffioen AW, Damen CA, Martinotti S. et al. Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors.. Cancer Res 1996; 56: 1111-1117.
  • 12 Nooijen PT, Westphal JR, Eggermont AM. et al. Endothelial P-selectin expression is reduced in advanced primary melanoma and melanoma metastasis.. Am J Pathol 1998; 152: 679-682.
  • 13 Griffioen AW, Damen CA, Blijham GH. et al. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium.. Blood 1996; 88: 667-673.
  • 14 Melder RJ, Koenig GC, Witwer BP. et al. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium.. Nat Med 1996; 2: 992-997.
  • 15 Dirkx AE, Oude Egbrink MG, Kuijpers MJ. et al. Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression.. Cancer Res 2003; 63: 2322-2329.
  • 16 Hellwig SM, Damen CA, van Adrichem NP. et al. Endothelial CD34 is suppressed in human malignancies: role of angiogenic factors.. Cancer Lett 1997; 120: 203-211.
  • 17 Hellebrekers DM, Jair KW, Vire E. et al. Angiostatic activity of DNA methyltransferase inhibitors.. Mol Cancer Ther 2006; 5: 467-475.
  • 18 Hellebrekers DM, Castermans K, Vire E. et al. Epi-genetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications.. Cancer Res 2006; 66: 10770-10777.
  • 19 Hellebrekers DM, Melotte V, Vire E. et al. Identification of epigenetically silenced genes in tumor endothelial cells.. Cancer Res 2007; 67: 4138-4148.
  • 20 Flati V, Pastore LI, Griffioen AW. et al. Endothelial cell anergy is mediated by bFGF through the sustained activation of p38-MAPK and NF-eb inhibition.. Int J Immunopathol Pharmacol 2006; 19: 761-773.
  • 21 Galon J, Costes A, Sanchez-Cabo F. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome.. Science 2006; 313: 1960-1964.
  • 22 Zhang L, Conejo-Garcia JR, Katsaros D. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer.. N Engl J Med 2003; 348: 203-213.
  • 23 Baeten CI, Castermans K, Hillen HF. et al. Proliferating endothelial cells and leukocyte infiltration as prognostic markers in colorectal cancer.. Clin Gastroenterol Hepatol 2006; 4: 1351-1357.
  • 24 Sun X, Kanwar JR, Leung E. et al. Angiostatin enhances B7.1-mediated cancer immunotherapy independently of effects on vascular endothelial growth factor expression.. Cancer Gene Ther 2001; 8: 719-727.
  • 25 Sun X, Krissansen GW, Fung PW. et al. Anti-angiogenic therapy subsequent to adeno-associated-virus-mediated immunotherapy eradicates lymphomas that disseminate to the liver.. Int J Cancer 2005; 113: 670-677.
  • 26 Cirone P, Bourgeois JM, Shen F. et al. Combined immunotherapy and antiangiogenic therapy of cancer with microencapsulated cells.. Human Gene Ther 2004; 15: 945-959.
  • 27 Dirkx AE, Oude Egbrink MG, Castermans K. et al. Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors.. Faseb J 2006; 20: 621-630.
  • 28 Gyorffy S, Palmer K, Podor TJ. et al. Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and IL-12: a role for combined anti-angiogenesis and immunotherapy.. J Immunol 2001; 166: 6212-6217.
  • 29 Li M, Huang X, Zhu Z. et al. The therapeutic efficacy of angiostatin against weakly- and highly-immunogenic 3LL tumors.. In vivo (Athens, Greece) 2002; 16: 577-582.
  • 30 Romagnani P, Lasagni L, Annunziato F. et al. CXC chemokines: the regulatory link between inflammation and angiogenesis.. Trends Immunol 2004; 25: 201-209.
  • 31 Addison CL, Arenberg DA, Morris SB. et al. The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis.. Human Gene Ther 2000; 11: 247-261.
  • 32 Sharma S, Stolina M, Luo J. et al. Secondary lymphoid tissue chemokine mediates T cell-dependent anti-tumor responses in vivo.. J Immunol 2000; 164: 4558-4563.
  • 33 Strieter RM, Belperio JA, Burdick MD. et al. CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer.. Ann NY Acad Sci 2004; 1028: 351-360.
  • 34 Tromp SC, oude Egbrink MG, Dings RP. et al. Tumor angiogenesis factors reduce leukocyte adhesion in vivo.. Int Immunol 2000; 12: 671-676.
  • 35 Griffioen AW, Damen CA, Mayo KH. et al. Angio-genesis inhibitors overcome tumor induced endothelial cell anergy.. Int J Cancer 1999; 80: 315-319.
  • 36 Budson AE, Ko L, Brasel C. et al. The angiogenesis inhibitor AGM-1470 selectively increases E-selectin.. Biochem Biophys Res Commun 1996; 225: 141-145.
  • 37 Zhang H, Issekutz AC. Down-modulation of monocyte transendothelial migration and endothelial adhesion molecule expression by fibroblast growth factor: reversal by the anti-angiogenic agent SU6668.. Am J Pathol 2002; 160: 2219-2230.
  • 38 Luo J, Lin J, Paranya G. et al. Angiostatin upregulates E-selectin in proliferating endothelial cells.. Biochem Biophys Res Commun 1998; 245: 906-911.
  • 39 Dirkx AE, Oude Egbrink MG, Wagstaff J. et al. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis.. J Leukoc Biol 2006; 80: 1183-1196.
  • 40 Leek RD, Lewis CE, Whitehouse R. et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma.. Cancer Res 1996; 56: 4625-4629.
  • 41 Klapper JA, Downey SG, Smith FO. et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma : a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006.. Cancer 2008; 113: 293-301.
  • 42 Verra N, de Jong D, Bex A. et al. Infiltration of activated dendritic cells and T cells in renal cell carcinoma following combined cytokine immunotherapy.. European Urol 2005; 48: 527-533.
  • 43 Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design.. Nature Rev 2006; 6: 595-601.
  • 44 Skak K, Kragh M, Hausman D. et al. Interleukin 21: combination strategies for cancer therapy.. Nat Rev Drug Discov 2008; 7: 231-240.
  • 45 Hong C, Park SH. Application of natural killer T cells in antitumor immunotherapy.. Critical Rev Immunol 2007; 27: 511-525.
  • 46 Tacken PJ, de Vries IJ, Torensma R. et al. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting.. Nature Rev 2007; 7: 790-802.
  • 47 Bins AD, Jorritsma A, Wolkers MC. et al. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression.. Nat Med 2005; 11: 899-904.
  • 48 Gattinoni L, Powell Jr DJ, Rosenberg SA. et al. Adoptive immunotherapy for cancer: building on success.. Nature Rev 2006; 6: 383-393.
  • 49 Dudley ME, Wunderlich JR, Shelton TE. et al. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients.. J Immunother 2003; 26: 332-342.
  • 50 Morgan RA, Dudley ME, Wunderlich JR. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes.. Science 2006; 314: 126-129.
  • 51 Schumacher TN. T-cell-receptor gene therapy.. Nature Rev 2002; 2: 512-519.
  • 52 Kessels HW, Wolkers MC, van den Boom MD. et al. Immunotherapy through TCR gene transfer.. Nature Immunol 2001; 2: 957-961.
  • 53 Jorritsma A, Bins AD, Schumacher TN. et al. Skewing the T-cell repertoire by combined DNA vaccination, host conditioning, and adoptive transfer.. Cancer Res 2008; 68: 2455-2462.
  • 54 Zitvogel L, Apetoh L, Ghiringhelli F. et al. The anti-cancer immune response: indispensable for therapeutic success?. J Clin Invest 2008; 118: 1991-2001.
  • 55 Begley J, Ribas A. Targeted therapies to improve tumor immunotherapy.. Clin Cancer Res 2008; 14: 4385-4391.
  • 56 Cheever MA. Twelve immunotherapy drugs that could cure cancers.. Immunological Rev 2008; 222: 357-368.
  • 57 van der Veldt AA, Meijerink MR, van den Eertwegh AJ. et al. Sunitinib for treatment of advanced renal cell cancer: primary tumor response.. Clin Cancer Res 2008; 14: 2431-2436.
  • 58 Bonehill A, Tuyaerts S, Van Nuffel AM. et al. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA.. Mol Ther 2008; 16: 1170-1180.
  • 59 Zang X, Allison JP. The B7 family and cancer therapy: costimulation and coinhibition.. Clin Cancer Res 2007; 13: 5271-5279.
  • 60 Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy.. Cancer Immunol Immunother 2005; 54: 307-314.
  • 61 Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment.. Nature Rev 2008; 8: 467-477.
  • 62 Krambeck AE, Thompson RH, Dong H. et al. B7-H4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival.. Proc Natl Acad Sci USA 2006; 103: 10391-10396.
  • 63 Crispen PL, Sheinin Y, Roth TJ. et al. Tumor cell and tumor vasculature expression of b7-h3 predict survival in clear cell renal cell carcinoma.. Clin Cancer Res 2008; 14: 5150-5157.
  • 64 Perillo NL, Pace KE, Seilhamer JJ. et al. Apoptosis of T cells mediated by galectin-1.. Nature 1995; 378: 736-739.
  • 65 Thijssen VL, Postel R, Brandwijk RJ. et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy.. Proc Natl Acad Sci USA 2006; 103: 15975-15980.
  • 66 Rabinovich GA, Baum LG, Tinari N. et al. Galec-tins and their ligands: amplifiers, silencers or tuners of the inflammatory response?. Trends Immunol 2002; 23: 313-320.
  • 67 Griffioen AW, van der Schaft DW, Barendsz-Janson AF. et al. Anginex, a designed peptide that inhibits angiogenesis.. Biochem J 2001; 354: 233-242.
  • 68 Kryczek I, Zou L, Rodriguez P. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma.. J Exp Med 2006; 203: 871-881.
  • 69 Haanen JB, van Oijen MG, Tirion F. et al. In situ detection of virus- and tumor-specific T-cell immunity.. Nat Med 2000; 6: 1056-1060.
  • 70 Vyth-Dreese FA, Kim YH, Dellemijn TA. et al. In situ visualization of antigen-specific T cells in cryopre-served human tissues.. J Immunol Methods 2006; 310: 78-85.
  • 71 Curiel TJ, Coukos G, Zou L. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival.. Nat Med 2004; 10: 942-949.
  • 72 Hipp MM, Hilf N, Walter S. et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses.. Blood 2008; 111: 5610-5620.
  • 73 Kepp O, Tesniere A, Zitvogel L. et al. The immunogenicity of tumor cell death.. Current Opin Oncol 2009; 21: 71-76.
  • 74 Reits EA, Hodge JW, Herberts CA. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy.. J Exp Med 2006; 203: 1259-1271.
  • 75 Desmedt C, Haibe-Kains B, Wirapati P. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes.. Clin Cancer Res 2008; 14: 5158-5165.
  • 76 van’t Veer LJ, Dai H, van de Vijver MJ. et al. Gene expression profiling predicts clinical outcome of breast cancer.. Nature 2002; 415: 530-536.