Thromb Haemost 2007; 98(05): 952-962
DOI: 10.1160/TH07-04-0294
Theme Issue Article
Schattauer GmbH

Urotensin-II in the lung: A matter for vascular remodelling and pulmonary hypertension?

Talija Djordjevic
1   Experimental Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, Germany
,
Agnes Görlach
1   Experimental Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, Germany
› Author Affiliations
Financial support:This work has been supported by Deutsche Forschungsgemeinschaft GO709/4–4, the sixth framework program of the EU (EUROXY) and Fondation Leducq.
Further Information

Publication History

Received 23 April 2007

Accepted after resubmission 23 August 2007

Publication Date:
30 November 2017 (online)

Summary

Urotensin-II (UII) is an evolutionary conserved peptide which has been initially discovered in the urophysis of the fish goby regulating body fluid composition and vascular tone. Mammalian UII has gained increasing interest since it has been considered as an even more potent vasoconstrictor than endothelin-1, although its efficiency is greatly variable throughout species and vascular beds. More recently, it has been shown that UII, which mediates its action via binding to the G-protein coupled urotensin-II receptor, is not only involved in the regulation of the vascular tone but can also stimulate a variety of signaling cascades in different cells and organs in the body including generation of reactive oxygen species and nitric oxide, activation of MAP kinases, and modulation of gene expression. Indeed, UII can stimulate proliferative processes, affect the extracellular matrix and may even add to a prothrombotic state. Such vascular remodelling processes are, in conjunction with enhanced vasoconstriction, involved in the pathogenesis of pulmonary hypertension, suggesting that UII may play a novel role in the pathogenesis of this disorder.

 
  • References

  • 1 Mandegar M, Fung YC, Huang W. et al. Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 2004; 68: 75-103.
  • 2 Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med 2004; 351: 1655-1665.
  • 3 Kilner PJ. Pulmonary resistance in cardiovascular context. Int J Cardiol 2004; 97 (Suppl. 01) 3-6.
  • 4 Jeffery TK, Wanstall JC. Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension. Pharmacol Ther 2001; 92: 1-20.
  • 5 Nicod LP. Pulmonary hypertension. Swiss Med Wkly 2003; 133: 103-110.
  • 6 Humbert M, Morrell NW, Archer SL. et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43 12 Suppl S 13S-24S.
  • 7 Cool CD, Groshong SD, Oakey J. et al. Pulmonary hypertension: cellular and molecular mechanisms. Chest 2005; 128 (Suppl. 06) 565S-571S.
  • 8 Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 2006; 99: 675-691.
  • 9 Herve P, Humbert M, Sitbon O. et al. Pathobiology of pulmonary hypertension. The role of platelets and thrombosis. Clin Chest Med 2001; 22: 451-458.
  • 10 Haworth SG. Role of the endothelium in pulmonary arterial hypertension. Vascul Pharmacol 2006; 45: 317-325.
  • 11 Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation 2004; 109: 159-165.
  • 12 Douglas SA, Ohlstein EH. Human urotensin-II, the most potent mammalian vasoconstrictor identified to date, as a therapeutic target for the management of cardiovascular disease. Trends Cardiovasc Med 2000; 10: 229-237.
  • 13 Richards AM, Charles C. Urotensin II in the cardiovascular system. Peptides 2004; 25: 1795-1802.
  • 14 Maguire JJ, Davenport AP. Is urotensin-II the new endothelin?. Br J Pharmacol 2002; 137: 579-588.
  • 15 Pearson D, Shively JE, Clark BR. et al. Urotensin II: a somatostatin-like peptide in the caudal neurosecretory system of fishes. Proc Natl Acad Sci USA 1980; 77: 5021-5024.
  • 16 Bern HA, Pearson D, Larson BA. et al. Neurohormones from fish tails: the caudal neurosecretory system. I. "Urophysiology" and the caudal neurosecretory system of fishes. Recent Prog Horm Res 1985; 41: 533-552.
  • 17 Ames RS, Sarau HM, Chambers JK. et al. Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 1999; 401: 282-286.
  • 18 Russell FD, Kearns P, Toth I. et al. Urotensin-IIconverting enzyme activity of furin and trypsin in human cells in vitro. J Pharmacol Exp Ther 2004; 310: 209-214.
  • 19 Nothacker HP, Clark S. From heart to mind. The urotensin II system and its evolving neurophysiological role. Febs J 2005; 272: 5694-5702.
  • 20 Russell FD, Meyers D, Galbraith AJ. et al. Elevated plasma levels of human urotensin-II immunoreactivity in congestive heart failure. Am J Physiol Heart Circ Physiol 2003; 285: H1576-1581.
  • 21 Liu Q, Pong SS, Zeng Z. et al. Identification of urotensin II as the endogenous ligand for the orphan G-protein-coupled receptor GPR14. Biochem Biophys Res Commun 1999; 266: 174-178.
  • 22 Nothacker HP, Wang Z, McNeill AM. et al. Identification of the natural ligand of an orphan G-proteincoupled receptor involved in the regulation of vasoconstriction. Nat Cell Biol 1999; 1: 383-385.
  • 23 Mori M, Sugo T, Abe M. et al. Urotensin II is the endogenous ligand of a G-protein-coupled orphan receptor, SENR (GPR14). Biochem Biophys Res Commun 1999; 265: 123-129.
  • 24 Douglas SA. Human urotensin-II as a novel cardiovascular target: ‘heart’ of the matter or simply a fishy ‘tail‘?. Curr Opin Pharmacol 2003; 3: 159-167.
  • 25 Proulx CD, Simaan M, Escher E. et al. Involvement of a cytoplasmic-tail serine cluster in urotensin II receptor internalization. Biochem J 2005; 385: 115-123.
  • 26 Oakley RH, Laporte SA, Holt JA. et al. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis. J Biol Chem 2001; 276: 19452-19460.
  • 27 Douglas SA, Tayara L, Ohlstein EH. et al. Congestive heart failure and expression of myocardial urotensin II. Lancet 2002; 359: 1990-1997.
  • 28 Matsushita M, Shichiri M, Imai T. et al. Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues. J Hypertens 2001; 19: 2185-2190.
  • 29 Maguire JJ, Kuc RE, Davenport AP. Orphan-receptor ligand human urotensin II: receptor localization in human tissues and comparison of vasoconstrictor responses with endothelin-1. Br J Pharmacol 2000; 131: 441-446.
  • 30 Jegou S, Cartier D, Dubessy C. et al. Localization of the urotensin II receptor in the rat central nervous system. J Comp Neurol 2006; 49: 21-36.
  • 31 Gibson A. Complex effects of Gillichthys urotensin II on rat aortic strips. Br J Pharmacol 1987; 91: 205-212.
  • 32 Gibson A, Wallace P, Bern HA. Cardiovascular effects of urotensin II in anesthetized and pithed rats. Gen Comp Endocrinol 1986; 64: 435-439.
  • 33 MacLean MR, Alexander D, Stirrat A. et al. Contractile responses to human urotensin-II in rat and human pulmonary arteries: effect of endothelial factors and chronic hypoxia in the rat. Br J Pharmacol 2000; 130: 201-204.
  • 34 Rossowski WJ, Cheng BL, Taylor JE. et al. Human urotensin II-induced aorta ring contractions are mediated by protein kinase C, tyrosine kinases and Rhokinase: inhibition by somatostatin receptor antagonists. Eur J Pharmacol 2002; 438: 159-170.
  • 35 Song W, McDonald J, Camarda V. et al. Cell and tissue responses of a range of Urotensin II analogs at cloned and native urotensin II receptors. Evidence for coupling promiscuity. Naunyn Schmiedebergs Arch Pharmacol 2006; 373: 148-157.
  • 36 Watanabe T, Kanome T, Miyazaki A. et al. Human urotensin II as a link between hypertension and coronary artery disease. Hypertens Res 2006; 29: 375-387.
  • 37 Sauzeau V, Le Mellionnec E, Bertoglio J. et al. Human urotensin II-induced contraction and arterial smooth muscle cell proliferation are mediated by RhoA and Rho-kinase. Circ Res 2001; 88: 1102-1104.
  • 38 Tasaki K, Hori M, Ozaki H. et al. Mechanism of human urotensin II-induced contraction in rat aorta. J Pharmacol Sci 2004; 94: 376-383.
  • 39 Camarda V, Rizzi A, Calo G. et al. Effects of human urotensin II in isolated vessels of various species; comparison with other vasoactive agents. Naunyn Schmiedebergs Arch Pharmacol 2002; 365: 141-149.
  • 40 Douglas SA, Sulpizio AC, Piercy V. et al. Differential vasoconstrictor activity of human urotensin-II in vascular tissue isolated from the rat, mouse, dog, pig, marmoset and cynomolgus monkey. Br J Pharmacol 2000; 131: 1262-1274.
  • 41 Heller J, Schepke M, Neef M. et al. Increased urotensin II plasma levels in patients with cirrhosis and portal hypertension. J Hepatol 2002; 37: 767-772.
  • 42 Dschietzig T, Bartsch C, Pregla R. et al. Plasma levels and cardiovascular gene expression of urotensin-II in human heart failure. Regul Pept 2002; 110: 33-38.
  • 43 Giebing G, Tolle M, Jurgensen J. et al. Arrestin-independent internalization and recycling of the urotensin receptor contribute to long-lasting urotensin II-mediated vasoconstriction. Circ Res 2005; 97: 707-715.
  • 44 Behm DJ, Harrison SM, Ao Z. et al. Deletion of the UT receptor gene results in the selective loss of urotensin- II contractile activity in aortae isolated from UT receptor knockout mice. Br J Pharmacol 2003; 139: 464-472.
  • 45 Hillier C, Berry C, Petrie MC. et al. Effects of urotensin II in human arteries and veins of varying caliber. Circulation 2001; 103: 1378-1381.
  • 46 Bottrill FE, Douglas SA, Hiley CR. et al. Human urotensin-II is an endothelium-dependent vasodilator in rat small arteries. Br J Pharmacol 2000; 130: 1865-1870.
  • 47 Katano Y, Ishihata A, Aita T. et al. Vasodilator effect of urotensin II, one of the most potent vasoconstricting factors, on rat coronary arteries. Eur J Pharmacol 2000; 402: R5-7.
  • 48 Gray GA, Jones MR, Sharif I. Human urotensin II increases coronary perfusion pressure in the isolated rat heart: potentiation by nitric oxide synthase and cyclooxygenase inhibition. Life Sci 2001; 69: 175-180.
  • 49 Stirrat A, Gallagher M, Douglas SA. et al. Potent vasodilator responses to human urotensin-II in human pulmonary and abdominal resistance arteries. Am J Physiol Heart Circ Physiol 2001; 280: H925-928.
  • 50 Lin L, Ding WH, Jiang W. et al. Urotensin-II activates L-arginine/nitric oxide pathway in isolated rat aortic adventitia. Peptides 2004; 25: 1977-1984.
  • 51 Bennett RT, Jones RD, Morice AH. et al. Vasoconstrictive effects of endothelin-1, endothelin-3, and urotensin II in isolated perfused human lungs and isolated human pulmonary arteries. Thorax 2004; 59: 401-407.
  • 52 Douglas SA, Dhanak D, Johns DG. From ‘gills to pills‘: urotensin-II as a regulator of mammalian cardiorenal function. Trends Pharmacol Sci 2004; 25: 76-85.
  • 53 Hongfang J, Cong B, Zhao B. et al. Effects of hydrogen sulfide on hypoxic pulmonary vascular structural remodeling. Life Sci 2006; 78: 1299-1309.
  • 54 Zhang Y, Li J, Cao J. et al. Effect of chronic hypoxia on contents of urotensin II and its functional receptors in rat myocardium. Heart Vessels 2002; 16: 64-68.
  • 55 Heringlake M, Kox T, Uzun O. et al. The relationship between urotensin II plasma immunoreactivity and left ventricular filling pressures in coronary artery disease. Regul Pept 2004; 121: 129-136.
  • 56 Simpson CM, Penny DJ, Stocker CF. et al. Urotensin II is raised in children with congenital heart disease. Heart 2006; 92: 983-984.
  • 57 Deuchar GA, Morecroft I, Dempsie Y. et al. The in vivo effects of human urotensin II in the rabbit and rat pulmonary circulation: effects of experimental pulmonary hypertension. Eur J Pharmacol 2006; 537: 135-142.
  • 58 Puikuan K, Chunyu Z, Jin F. et al. Inhalation of nebulized nitroglycerin, a nitric oxide donor, for the treatment of pulmonary hypertension induced by high pulmonary blood flow. Heart Vessels 2006; 21: 169-179.
  • 59 Dschietzig T, Richter C, Bartsch C. et al. Flow-induced pressure differentially regulates endothelin-1, urotensin II, adrenomedullin, and relaxin in pulmonary vascular endothelium. Biochem Biophys Res Commun 2001; 289: 245-251.
  • 60 Qi J, Du J, Tang X. et al. The upregulation of endothelial nitric oxide synthase and urotensin-II is associated with pulmonary hypertension and vascular diseases in rats produced by aortocaval shunting. Heart Vessels 2004; 19: 81-88.
  • 61 Wang T, Li SX, Zhang XQ. et al. Study on the effect of adrenomedulin and urotensin-II on pulmonary hypertension of patients with congenital heart disease. Zhonghua Yi Xue Za Zhi 2005; 85: 2691-2695.
  • 62 Djordjevic T, BelAiba RS, Bonello S. et al. Human urotensin II is a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells. Arterioscler Thromb Vasc Biol 2005; 25: 519-525.
  • 63 Watanabe T, Pakala R, Katagiri T. et al. Synergistic effect of urotensin II with serotonin on vascular smooth muscle cell proliferation. J Hypertens 2001; 19: 2191-2196.
  • 64 Watanabe T, Pakala R, Katagiri T. et al. Antioxidant N-acetylcysteine inhibits vasoactive agents-potentiated mitogenic effect of mildly oxidized LDL on vascular smooth muscle cells. Hypertens Res 2002; 25: 311-315.
  • 65 Watanabe T, Takahashi K, Kanome T. et al. Human urotensin-II potentiates the mitogenic effect of mildly oxidized low-density lipoprotein on vascular smooth muscle cells: comparison with other vasoactive agents and hydrogen peroxide. Hypertens Res 2006; 29: 821-831.
  • 66 Matsusaka S, Wakabayashi I. Enhancement of vascular smooth muscle cell migration by urotensin II. Naunyn Schmiedebergs Arch Pharmacol 2006; 373: 381-386.
  • 67 Shi L, Ding W, Li D. et al. Proliferation and antiapoptotic effects of human urotensin II on human endothelial cells. Atherosclerosis 2006; 188: 260-264.
  • 68 Spinazzi R, Albertin G, Nico B. et al. Urotensin-II and its receptor (UT-R) are expressed in rat brain endothelial cells, and urotensin-II via UT-R stimulates angiogenesis in vivo and in vitro. Int J Mol Med 2006; 18: 1107-1112.
  • 69 He YH, Hong JM, Guo HS. et al. Effects of urotensin II on cultured cardiac fibroblast proliferation and collagen type I mRNA expression. Di Yi Jun Yi Da Xue Xue Bao 2004; 24: 505-508.
  • 70 Dai HY, Ge ZM, Li YH. Effect of urotensin II on proliferative potential and phosphorylation of extracellular signal-regulated kinase 1/2 of adventitial fibroblasts from spontaneously hypertensive rat. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2006; 28: 776-780.
  • 71 Takahashi K, Totsune K, Murakami O. et al. Expression of urotensin II and its receptor in adrenal tumors and stimulation of proliferation of cultured tumor cells by urotensin II. Peptides 2003; 24: 301-306.
  • 72 Matsushita M, Shichiri M, Fukai N. et al. Urotensin II is an autocrine/paracrine growth factor for the porcine renal epithelial cell line, LLCPK1. Endocrinology 2003; 144: 1825-1831.
  • 73 Zou Y, Nagai R, Yamazaki T. Urotensin II induces hypertrophic responses in cultured cardiomyocytes from neonatal rats. FEBS Lett 2001; 508: 57-60.
  • 74 Onan D, Pipolo L, Yang E. et al. Urotensin II promotes hypertrophy of cardiac myocytes via mitogenactivated protein kinases. Mol Endocrinol 2004; 18: 2344-2354.
  • 75 Wedgwood S, Dettman RW, Black SM. ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 2001; 281: L1058-1067.
  • 76 Wedgwood S, Black SM. Role of reactive oxygen species in vascular remodeling associated with pulmonary hypertension. Antioxid Redox Signal 2003; 5: 759-769.
  • 77 Touyz RM. Reactive oxygen species and angiotensin II signaling in vascular cells -- implications in cardiovascular disease. Braz J Med Biol Res 2004; 37: 1263-1273.
  • 78 Gorlach A, Kietzmann T, Hess J. Redox signaling through NADPH oxidases: involvement in vascular proliferation and coagulation. Ann NY Acad Sci 2002; 973: 505-507.
  • 79 Torres M, Forman HJ. Redox signaling and the MAP kinase pathways. Biofactors 2003; 17: 287-296.
  • 80 Grobe AC, Wells SM, Benavidez E. et al. Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am J Physiol Lung Cell Mol Physiol 2006; 290: L1069-1077.
  • 81 Wedgwood S, Steinhorn RH, Bunderson M. et al. Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 2005; 289: L660-666.
  • 82 Liu JQ, Zelko IN, Erbynn EM. et al. Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 2006; 290: L2-10.
  • 83 Fresquet F, Pourageaud F, Leblais V. et al. Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol 2006; 148: 714-723.
  • 84 Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285: R277-297.
  • 85 Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86: 494-501.
  • 86 Bokoch GM, Knaus UG. NADPH oxidases: not just for leukocytes anymore!. Trends Biochem Sci 2003; 28: 502-508.
  • 87 Gorlach A, Brandes RP, Nguyen K. et al. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 2000; 87: 26-32.
  • 88 Brennan LA, Steinhorn RH, Wedgwood S. et al. Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res 2003; 92: 683-691.
  • 89 Zhang AY, Chen YF, Zhang DX. et al. Urotensin II is a nitric oxide-dependent vasodilator and natriuretic peptide in the rat kidney. Am J Physiol Renal Physiol 2003; 285: F792-798.
  • 90 Camarda V, Song W, Marzola E. et al. Urantide mimics urotensin-II induced calcium release in cells expressing recombinant UT receptors. Eur J Pharmacol 2004; 498: 83-86.
  • 91 Lacza Z D WB. Urotensin-II is a nitric oxide-dependent vasodilator in the pial arteries of the newborn pig. Life Sci 2006; 78: 2763-2766.
  • 92 Prosser HC, Leprince J, Vaudry H. et al. Cardiovascular effects of native and non-native urotensin II and urotensin II-related peptide on rat and salmon hearts. Peptides 2006; 27: 3261-3268.
  • 93 Szabo C. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock 1996; 6: 79-88.
  • 94 Wedgwood S, Black SM. Molecular mechanisms of nitric oxide-induced growth arrest and apoptosis in fetal pulmonary arterial smooth muscle cells. Nitric Oxide 2003; 9: 201-210.
  • 95 Belik J, Jankov RP, Pan J. et al. Peroxynitrite inhibits relaxation and induces pulmonary artery muscle contraction in the newborn rat. Free Radic Biol Med 2004; 37: 1384-1392.
  • 96 Chakraborti S, Mandal A, Das S. et al. Inhibition of Na+/Ca2+ exchanger by peroxynitrite in microsomes of pulmonary smooth muscle: role of matrix metalloproteinase- 2. Biochim Biophys Acta 2004; 1671: 70-78.
  • 97 Said SI. Mediators and modulators of pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2006; 291: L547-558.
  • 98 Black SM, Fineman JR. Oxidative and nitrosative stress in pediatric pulmonary hypertension: roles of endothelin- 1 and nitric oxide. Vascul Pharmacol 2006; 45: 308-316.
  • 99 Hampl V, Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev 2000; 80: 1337-1372.
  • 100 Michelakis ED. The role of the NO axis and its therapeutic implications in pulmonary arterial hypertension. Heart Fail Rev 2003; 8: 5-21.
  • 101 Saleh D, Barnes PJ, Giaid A. Increased production of the potent oxidant peroxynitrite in the lungs of patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1997; 155: 1763-1769.
  • 102 Shaul PW, Yuhanna IS, German Z. et al. Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Am J Physiol 1997; 272: L1005-1012.
  • 103 Shirai M, Pearson JT, Shimouchi A. et al. Changes in functional and histological distributions of nitric oxide synthase caused by chronic hypoxia in rat small pulmonary arteries. Br J Pharmacol 2003; 139: 899-910.
  • 104 Hoehn T, Preston AA, McPhaden AR. et al. Endothelial nitric oxide synthase (NOS) is upregulated in rapid progressive pulmonary hypertension of the newborn. Intensive Care Med 2003; 29: 1757-1762.
  • 105 Black SM, Fineman JR, Steinhorn RH. et al. Increased endothelial NOS in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol 1998; 275: H1643-1651.
  • 106 Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006; 113: 1708-1714.
  • 107 Khoo JP, Zhao L, Alp NJ. et al. Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation 2005; 111: 2126-2133.
  • 108 Nandi M, Miller A, Stidwill R. et al. Pulmonary hypertension in a GTP-cyclohydrolase 1-deficient mouse. Circulation 2005; 111: 2086-2090.
  • 109 Cifuentes ME, Pagano PJ. Targeting reactive oxygen species in hypertension. Curr Opin Nephrol Hypertens 2006; 15: 179-186.
  • 110 Stefansson S, McMahon GA, Petitclerc E. et al. Plasminogen activator inhibitor-1 in tumor growth, angiogenesis and vascular remodeling. Curr Pharm Des 2003; 9: 1545-1564.
  • 111 Altman R, Scazziota A, Rouvier J. et al. Coagulation and fibrinolytic parameters in patients with pulmonary hypertension. Clin Cardiol 1996; 19: 549-554.
  • 112 Hoeper MM, Sosada M, Fabel H. Plasma coagulation profiles in patients with severe primary pulmonary hypertension. Eur Respir J 1998; 12: 1446-1449.
  • 113 Wang H, Mehta JL, Chen K. et al. Human urotensin II modulates collagen synthesis and the expression of MMP-1 in human endothelial cells. J Cardiovasc Pharmacol 2004; 44: 577-581.
  • 114 Dai HY, Kang WQ, Wang X. et al. The involvement of transforming growth factor-beta1 secretion in Urotensin II-induced collagen synthesis in neonatal cardiac fibroblasts. Regul Pept 2007; 140: 88-93.
  • 115 Tzanidis A, Hannan RD, Thomas WG. et al. Direct actions of urotensin II on the heart: implications for cardiac fibrosis and hypertrophy. Circ Res 2003; 93: 246-253.
  • 116 Yap LB, Ashrafian H, Mukerjee D. et al. The natriuretic peptides and their role in disorders of right heart dysfunction and pulmonary hypertension. Clin Biochem 2004; 37: 847-856.
  • 117 Shi XD, Li ZL, Wu HC. et al. Mechanism of urotensin II-stimulated adrenomedullin secretion in human vascular endothelial cells. Di Yi Jun Yi Da Xue Xue Bao 2005; 25: 791-793.
  • 118 Murakami S, Kimura H, Kangawa K. et al. Physiological significance and therapeutic potential of adrenomedullin in pulmonary hypertension. Cardiovasc Hematol Disord Drug Targets 2006; 6: 125-132.
  • 119 Ribatti D, Nico B, Spinazzi R. et al. The role of adrenomedullin in angiogenesis. Peptides 2005; 26: 1670-1675.
  • 120 Kakishita M, Nishikimi T, Okano Y. et al. Increased plasma levels of adrenomedullin in patients with pulmonary hypertension. Clin Sci (Lond) 1999; 96: 33-39.
  • 121 Gartlon JE, Ashmeade T, Duxon M. et al. Urotensin- II, a neuropeptide ligand for GPR14, induces c-fos in the rat brain. Eur J Pharmacol 2004; 493: 95-98.
  • 122 Johns DG, Ao Z, Naselsky D. et al. Urotensin-II-mediated cardiomyocyte hypertrophy: effect of receptor antagonism and role of inflammatory mediators. Naunyn Schmiedebergs Arch Pharmacol 2004; 370: 238-250.
  • 123 Bousette N, Patel L, Douglas SA. et al. Increased expression of urotensin II and its cognate receptor GPR14 in atherosclerotic lesions of the human aorta. Atherosclerosis 2004; 176: 117-123.
  • 124 Johnson SR, Granton JT, Mehta S. Thrombotic arteriopathy and anticoagulation in pulmonary hypertension. Chest 2006; 130: 545-552.
  • 125 Yi ES, Kim H, Ahn H. et al. Distribution of obstructive intimal lesions and their cellular phenotypes in chronic pulmonary hypertension. A morphometric and immunohistochemical study. Am J Respir Crit Care Med 2000; 162: 1577-1586.
  • 126 Mann KG. Thrombin formation. Chest 2003; 124 (Suppl. 03) 4S-10S.
  • 127 Mann KG, Butenas S, Brummel K. The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol 2003; 23: 17-25.
  • 128 Herkert O, Djordjevic T, BelAiba RS. et al. Insights into the redox control of blood coagulation: role of vascular NADPH oxidase-derived reactive oxygen species in the thrombogenic cycle. Antioxid Redox Signal 2004; 6: 765-776.
  • 129 Eisenberg PR, Lucore C, Kaufman L. et al. Fibrinopeptide A levels indicative of pulmonary vascular thrombosis in patients with primary pulmonary hypertension. Circulation 1990; 82: 841-847.
  • 130 Bonello S, Zahringer C, Belaiba RS. et al. Reactive oxygen species activate the HIF-1{alpha} promoter via a functional NF{kappa}B site. Arterioscler Thromb Vasc Biol 2007; 27: 755-761.
  • 131 Zhu YC, Zhu YZ, Moore PK. The role of urotensin II in cardiovascular and renal physiology and diseases. Br J Pharmacol 2006; 148: 884-901.
  • 132 Russell FD, Molenaar P, O’Brien DM. Cardiostimulant effects of urotensin-II in human heart in vitro. Br J Pharmacol 2001; 132: 5-9.
  • 133 Zhang YG, Li YG, Liu BG. et al. Urotensin II accelerates cardiac fibrosis and hypertrophy of rats induced by isoproterenol. Acta Pharmacol Sin 2007; 28: 36-43.
  • 134 Ng LL, Loke I, O’Brien RJ. et al. Plasma urotensin in human systolic heart failure. Circulation 2002; 106: 2877-2880.
  • 135 Richards AM, Nicholls MG, Lainchbury JG. et al. Plasma urotensin II in heart failure. Lancet 2002; 360: 545-546.
  • 136 Khan SQ, Bhandari SS, Quinn P. et al. Urotensin II is raised in acute myocardial infarction and low levels predict risk of adverse clinical outcome in humans. Int J Cardiol 2007; 117: 323-328.
  • 137 Watanabe T, Suguro T, Kanome T. et al. Human urotensin II accelerates foam cell formation in human monocyte-derived macrophages. Hypertension 2005; 46: 738-744.
  • 138 Maguire JJ, Kuc RE, Wiley KE. et al. Cellular distribution of immunoreactive urotensin-II in human tissues with evidence of increased expression in atherosclerosis and a greater constrictor response of small compared to large coronary arteries. Peptides 2004; 25: 1767-1774.
  • 139 Wang ZJ, Shi LB, Xiong ZW. et al. Alteration of vascular urotensin II receptor in mice with apolipoprotein E gene knockout. Peptides 2006; 27: 858-863.
  • 140 Suguro T, Watanabe T, Ban Y. et al. Increased human urotensin II levels are correlated with carotid atherosclerosis in essential hypertension. Am J Hypertens 2007; 20: 211-217.
  • 141 Totsune K, Takahashi K, Arihara Z. et al. Increased plasma urotensin II levels in patients with diabetes mellitus. Clin Sci (Lond) 2003; 104: 1-5.
  • 142 Cheung BM, Leung R, Man YB. et al. Plasma concentration of urotensin II is raised in hypertension. J Hypertens 2004; 22: 1341-1344.
  • 143 Langham RG, Kelly DJ, Gow RM. et al. Increased expression of urotensin II and urotensin II receptor in human diabetic nephropathy. Am J Kidney Dis 2004; 44: 826-831.
  • 144 Sidharta PN, Wagner FD, Bohnemeier H. et al. Pharmacodynamics and pharmacokinetics of the urotensin II receptor antagonist palosuran in macroalbuminuric, diabetic patients. Clin Pharmacol Ther 2006; 80: 246-256.
  • 145 Bousette N, Pottinger J, Ramli W. et al. Urotensin- II receptor blockade with SB-611812 attenuates cardiac remodeling in experimental ischemic heart disease. Peptides 2006; 27: 2919-2926.
  • 146 Bousette N, Hu F, Ohlstein EH. et al. Urotensin-II blockade with SB-611812 attenuates cardiac dysfunction in a rat model of coronary artery ligation. J Mol Cell Cardiol 2006; 41: 285-295.