Rofo 2008; 180(6): 505-513
DOI: 10.1055/s-2008-1027290
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Experimentelle Kleintier-MRT: Klinische MRT-Systeme als Schnittstelle zur biomedizinischen Grundlagenforschung

Small Animal MRI: Clinical MRI as an Interface to Basic Biomedical ResearchJ. G. Pinkernelle1 , L. Stelter1 , B. Hamm1 , U. Teichgräber1
  • 1Institut für Radiologie, Charité Universitätsmedizin Berlin
Further Information

Publication History

eingereicht: 6.11.2007

angenommen: 21.2.2008

Publication Date:
26 May 2008 (online)

Zusammenfassung

In den biomedizinischen Grundlagenfächern ist die Nachfrage nach hochaufgelöster Kleintier-MRT stetig steigend. Dedizierte Kleintiersysteme, die mit B 0-Feldern üblicherweise im Bereich von 4,7 T–7 T und oftmals auch darüber arbeiten, genügen selbst den höchsten Ansprüchen an die Bildqualität. Doch auch der Einsatz effizienter, hochauflösender RF-Spulen in der klinischen MRT bis zu 3.0 T ermöglicht detaillierte und kontrastreiche morphologische Darstellungen im Submillimeterbereich. So wird über die erfolgreiche Anwendung klinischer MRT-Geräte für Untersuchungen am Kleintier in der biomedizinischen Literatur vielfach berichtet. Am häufigsten sind Berichte über die Verwendung kleiner klinischer Spulen. Oftmals finden jedoch auch speziell entwickelte, volumenoptimierte RF-Spulen experimentelle Anwendung. Sehr anspruchsvolle Fragestellungen können mithilfe zusätzlicher Gradientenspulen in einem klinischen Scanner bearbeitet werden. Für die Reduktion von Bewegungsartefakten stehen spezielle kleintierangepasste EKG- und Atemsteuerungsgeräte zur Verfügung. Die Vorteile der klinischen MRT liegen in ihrer weiten Verbreitung, im geringeren finanziellen Aufwand bei guter Leistungsfähigkeit und auch in der translationalen Verwertbarkeit der Bildergebnisse.

Abstract

The demand for highly resolved small animal MRI for the purpose of biomedical research has increased constantly. Dedicated small animal MRI scanners working at ultra high field strengths from 4.7 to 7.0 T and even above are MRI at its best. However, using high resolution RF coils in clinical scanners up to 3.0 T, small animal MRI can achieve highly resolved images showing excellent tissue contrast. In fact, in abundant experimental studies, clinical MRI is used for small animal imaging. Mostly clinical RF coils in the single-loop design are applied. In addition, custom-built RF coils and even gradient inserts are used in a clinical scanner. For the reduction of moving artifacts, special MRI-compatible animal ECG und respiration devices are available. In conclusion, clinical devices offer broad availability, are less expense in combination with good imaging performance and provide a translational nature of imaging results.

Literatur

  • 1 Bottomley P A. In vivo tumor discrimination in a rat by proton nuclear magnetic resonance imaging.  Cancer Res. 1979;  39 468-470
  • 2 Hansen G, Crooks L E, Davis P. et al . In vivo imaging of the rat anatomy with nuclear magnetic resonance.  Radiology. 1980;  136 695-700
  • 3 Service R F. Biological imaging. Scanners get a fix on lab animals.  Science. 1999;  286 2261-2263
  • 4 Lewis J S, Achilefu S, Garbow J R. et al . Small animal imaging. Current technology and perspectives for oncological imaging.  Eur J Cancer. 2002;  38 2173-2188
  • 5 Grimm J, Wunder A. Molekulare Bildgebung: Stand der Forschung.  Fortschr Röntgenstr. 2005;  177 326-337
  • 6 Behe M, Keil B, Alfke H. et al . Kombinierte radiologische und nuklearmedizinische Bildgebung in Tierexperimenten: Ein Überblick über die aktuellen Möglichkeiten.  Fortschr Röntgenstr. 2007;  179 796-803
  • 7 Stelter L, Amthauer H, Rexin A. et al . An Orthotopic Model of Pancreatic Somatostatin Receptor (SSTR)-Positive Tumors Allows Bimodal Imaging Studies Using 3T MRI and Animal PET-Based Molecular Imaging of SSTR Expression.  Neuroendocrinology. 2007;  Epub ahead of print
  • 8 Gemeinhardt O, Ludemann L, Prochnow D. et al . Differentiation of prostate cancer from normal prostate tissue in an animal model: conventional MRI and dynamic contrast-enhanced MRI.  Fortschr Röntgenstr. 2005;  177 935-939
  • 9 Luciani A, Parouchev A, Smirnov P. et al . In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system-initial experience in mice.  Eur Radiol. 2007;  18 59-69
  • 10 Schäfer R, Wiskirchen J, Guo. et al . Aptamer-Based Isolation and Subsequent Imaging of Mesenchymal Stem Cells in Ischemic Myocard by Magnetic Resonance Imaging.  Fortschr Röntgenstr. 2007;  179 1009-1015
  • 11 Shapiro E M, Gonzalez-Perez O, Garcia-Verdugo M. et al . Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain.  Neuroimage. 2006;  32 1150-1157
  • 12 Torrente Y, Belicchi M, Marchesi C. et al . Autologous transplantation of muscle-derived CD 133 + stem cells in Duchenne muscle patients.  Cell Transplant. 2007;  16 563-577
  • 13 Pomper M G, Lee J S. Small animal imaging in drug development.  Curr Pharm Des. 2005;  11 3247-3272
  • 14 Muruganandham M, Lupu M, Dyke J P. et al . Preclinical evaluation of tumor microvascular response to a novel antiangiogenic/antitumor agent RO 0 281 501 by dynamic contrast-enhanced MRI at 1.5 T.  Mol Cancer Ther. 2006;  5 1950-1957
  • 15 Simon G, Drup-Link H, Vopelius-Feldt von J. et al . MRT der Arthritis mit dem USPIO SH U 555 C: Optimierung des T 1-Enhancements.  Fortschr Röntgenstr. 2006;  178 200-206
  • 16 Acara M A, Mazurchuk R J, Nickerson P A. et al . Magnetic resonance imaging and histopathology of hydronephrosis in the rat.  Magn Reson Imaging. 1991;  9 89-92
  • 17 Fiel R J, Alletto J J, Severin C M. et al . MR imaging of normal rat brain at 0.35 T and correlated histology.  J Magn Reson Imaging. 1991;  1 651-656
  • 18 Button T M, Fiel R J, Goldrosen M. et al . Small animal MRI at 0.35 Tesla: growth and morphology of intra-organ murine tumors.  Magn Reson Imaging. 1990;  8 505-509
  • 19 Oweida A J, Dunn E A, Karlik S J. et al . Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images.  J Magn Reson Imaging. 2007;  26 144-151
  • 20 Mandeville J B, Jenkins B G, Kosofsky B E. et al . Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat brain.  Magn Reson Med. 2001;  45 443-447
  • 21 Stroh A, Faber C, Neuberger T. et al . In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging.  Neuroimage. 2005;  24 635-645
  • 22 Edelstein W A, Glover G H, Hardy C J. et al . The intrinsic signal-to-noise ratio in NMR imaging.  Magn Reson Med. 1986;  3 604-618
  • 23 Barker P B, Hearshen D O, Boska M D. Single-voxel proton MRS of the human brain at 1.5T and 3.0T.  Magn Reson Med. 2001;  45 765-769
  • 24 Schmidt G P, Wintersperger B, Graser A. et al . High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study.  Invest Radiol. 2007;  42 449-459
  • 25 Beuf O, Jaillon F, Saint-Jalmes H. Small-animal MRI: signal-to-noise ratio comparison at 7 and 1.5 T with multiple-animal acquisition strategies.  MAGMA. 2006;  19 202-208
  • 26 Schindera S T, Merkle E M, Dale B M. et al . Abdominal magnetic resonance imaging at 3.0 T what is the ultimate gain in signal-to-noise ratio?.  Acad Radiol. 2006;  13 1236-1243
  • 27 Szeglowski S D, Hornak J P. Asymmetric single-turn solenoid for MRI of the wrist.  Magn Reson Med. 1993;  30 750-753
  • 28 Turner R. Gradient coil design: a review of methods.  Magn Reson Imaging. 1993;  11 903-920
  • 29 Robson M D, Gore J C, Constable R T. Measurement of the point spread function in MRI using constant time imaging.  Magn Reson Med. 1997;  38 733-740
  • 30 Rossmann K. Point spread-function, line spread-function, and modulation transfer function. Tools for the study of imaging systems.  Radiology. 1969;  93 257-272
  • 31 Bernstein M A, Huston III J , Ward H A. Imaging artifacts at 3.0T.  J Magn Reson Imaging. 2006;  24 735-746
  • 32 Schmidt G P, Wintersperger B, Graser A. et al . High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study.  Invest Radiol. 2007;  42 449-459
  • 33 Brockmann M A, Ulmer S, Leppert J. et al . Analysis of mouse brain using a clinical 1.5 T scanner and a standard small loop surface coil.  Brain Res. 2006;  1068 138-142
  • 34 Lussanet Q G, Beets-Tan R G, Backes W H. et al . Dynamic contrast-enhanced magnetic resonance imaging at 1.5 Tesla with gadopentetate dimeglumine to assess the angiostatic effects of anginex in mice.  Eur J Cancer. 2004;  40 1262-1268
  • 35 Wolf R F, Lam K H, Mooyaart E L. et al . Magnetic resonance imaging using a clinical whole body system: an introduction to a useful technique in small animal experiments.  Lab Anim. 1992;  26 222-227
  • 36 Weissleder de R, Moore A, Mahmood U. et al . In vivo magnetic resonance imaging of transgene expression.  Nat Med. 2000;  6 351-355
  • 37 Xu S, Gade T P, Matei C. et al . In vivo multiple-mouse imaging at 1.5 T.  Magn Reson Med. 2003;  49 551-557
  • 38 Moore A, Marecos E, Bogdanov A. et al . Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model.  Radiology. 2000;  214 568-574
  • 39 Smirnov P, Gazeau F, Lewin M. et al . In vivo cellular imaging of magnetically labeled hybridomas in the spleen with a 1.5-T clinical MRI system.  Magn Reson Med. 2004;  52 73-79
  • 40 Schild H. Clinical highfield MR.  Fortschr Röntgenstr. 2005;  177 621-631
  • 41 Ittrich H, Lange C, Tögel F. et al . In Vivo Magnetic Resonance Imaging of Iron Oxide Labeled, Arterially-Injected Mesenchymal Stem Cells in Kidneys of Rats With Acute Ischemic Kidney Injury: Detection and Monitoring at 3T.  JMRI. 2007;  25 1179-1191
  • 42 Jordan A, Scholz R, Maier-Hauff K. et al . The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma.  J Neurooncol. 2006;  78 7-14
  • 43 Bock N A, Konyer N B, Henkelman R M. Multiple-mouse MRI.  MRM. 2003;  49 158-167
  • 44 Thunemann A F, Schutt D, Kaufner L. et al . Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid).  Langmuir. 2006;  22 2351-2357
  • 45 Cook L L, Foster P J, Karlik S J. Pathology-guided MR analysis of acute and chronic experimental allergic encephalomyelitis spinal cord lesions at 1.5T.  J Magn Reson Imaging. 2005;  22 180-188
  • 46 Fink C, Kiessling F, Bock M. et al . High-resolution three-dimensional MR angiography of rodent tumors: morphologic characterization of intratumoral vasculature.  J Magn Reson Imaging. 2003;  18 59-65
  • 47 Heyn C, Ronald J A, Ramadan S S. et al . In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain.  Magn Reson Med. 2006;  56 1001-1010
  • 48 Heyn C, Ronald J A, MacKenzie L T. et al . In vivo magnetic resonance imaging of single cells in mouse brain with optical validation.  Magn Reson Med. 2006;  55 23-29
  • 49 Dunn E A, Weaver L C, Dekaban G A. et al . Cellular imaging of inflammation after experimental spinal cord injury.  Mol Imaging. 2005;  4 53-62
  • 50 Oweida A J, Dunn E A, Foster P J. Cellular imaging at 1.5 T: detecting cells in neuroinflammation using active labeling with superparamagnetic iron oxide.  Mol Imaging. 2004;  3 85-95
  • 51 Mayer D, Zahr N M, Adalsteinsson E. et al . In vivo fiber tracking in the rat brain on a clinical 3T MRI system using a high strength insert gradient coil.  Neuroimage. 2007;  35 1077-1085
  • 52 Brau A C, Hedlund L W, Johnson G A. Cine magnetic resonance microscopy of the rat heart using cardiorespiratory-synchronous projection reconstruction.  J Magn Reson Imaging. 2004;  20 31-38
  • 53 Franco F, Dubois S K, Peshock R M. et al . Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy.  Am J Physiol. 1998;  274 H679-H683
  • 54 Jones J R, Mata J F, Yang Z. et al . Left ventricular remodeling subsequent to reperfused myocardial infarction: evaluation of a rat model using cardiac magnetic resonance imaging.  J Cardiovasc Magn Reson. 2002;  4 317-326
  • 55 Oshinski J N, Yang Z, Jones J R. et al . Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging.  Circulation. 2001;  104 2838-2842
  • 56 Ivancevic M K, Daire J L, Hyacinthe J N. et al . High-resolution complementary spatial modulation of magnetization (CSPAMM) rat heart tagging on a 1.5 Tesla Clinical Magnetic Resonance System: a preliminary feasibility study.  Invest Radiol. 2007;  42 204-210
  • 57 Holoday D A, Fiserova-Bergerova V, Latto I P. et al . Resistance of isoflurane to biotransformation in man.  Anesthesiology. 1975;  43 325-332
  • 58 Fueger B J, Czernin J, Hildebrandt I. et al . Impact of animal handling on the results of F-18 FDG PET studies in mice.  J Nucl Med. 2006;  47 999-1006

Dr. Jens Georg Pinkernelle

Institut für Radiologie, Charité Universitätsmedizin Berlin

Augustenburger Platz 1

13353 Berlin

Phone: ++ 49/4 50/65 71 35

Fax: ++ 49/4 50/55 79 07

Email: jens.pinkernelle@charite.de

    >