Int J Sports Med 2007; 28(7): 585-589
DOI: 10.1055/s-2007-964859
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Relationship between Strength Level and Pedal Rate

F. Bieuzen1 , F. Vercruyssen1 , C. Hausswirth2 , J. Brisswalter1
  • 1Department of Ergonomics, University of Toulon Var, Toulon, France
  • 2Department of Biomechanics and Physiology, Insep, Paris, France
Further Information

Publication History

accepted after revision June 7, 2006

Publication Date:
15 March 2007 (online)

Abstract

The purpose of this study was to examine the relationship between strength capacity and preferred and optimal cadence in well trained cyclists. Eighteen cyclists participated in this study. Each subject completed three sessions. The initial session was to evaluate the maximal isokinetic voluntary contraction level of lower limb. The second session was an incremental test to exhaustion. During the third session subjects performed a constant cycling exercise (20 min) conducted at five randomly cadences (50, 70, 90, 110 rpm) and at the preferred cadence (FCC) at the power reached at ventilatory threshold. Cardiorespiratory and EMG values were recorded. A metabolic optimum (EOC) was observed at 63.5 ± 7.8 rpm different from preferred cadence (FCC, 90.6 ± 9.1 rpm). No difference was found between FCC and the neuromuscular optimal cadence (NOC, 93.5 ± 4). Significant relationships were found between EOC, NOC and strength capacities (r = - 0.75 and - 0. 63), whereas FCC was only related with V·O2max (r = 0.59). The main finding of this study was that during submaximal cycling energetically optimal cadence or neuromuscular optimum in trained cyclists was significantly related with strength capacity and whereas preferred cadence seems to be related with endurance training status of cyclists.

References

  • 1 Abiss C R, Laursen P B. Models to explain fatigue during prolonged endurance cycling.  Sports Med. 2005;  35 1-32
  • 2 Brisswalter J, Hausswirth C, Smith D, Vercruyssen F, Vallier J M. Energetically optimal cadence vs. freely-chosen cadence during cycling: effect of exercise duration.  Int J Sports Med. 2000;  21 60-64
  • 3 Brisswalter J, Mottet D. Energy cost and stride duration at preferred transition gait speed between walking and running.  Can J Appl Physiol. 1996;  21 471-480
  • 4 Coast J R, Cox R H, Welch H G. Optimal pedalling rate in prolonged bouts of cycle ergometry.  Med Sci Sports Exerc. 1986;  18 225-230
  • 5 Coast J R, Rasmussen S A, Krause K M, O'Kroy J A, Loy R A, Rhodes J. Ventilatory work and oxygen consumption during exercise and hyperventilation.  J Appl Physiol. 1993;  74 793-798
  • 6 Di Prampero P E. The energy cost of human locomotion on land and in water.  Int J Sports Med. 1986;  7 55-72
  • 7 Foss O, Hallen J. The most economical cadence increases with increasing workload.  Eur J Appl Physiol. 2004;  92 443-451
  • 8 Foss O, Hallen J. Cadence and performance in elite cyclists.  Eur J Appl Physiol. 2005;  93 453-462
  • 9 Francescato M P, Girardis M, di Prampero P E. Oxygen cost of internal work during cycling.  Eur J Appl Physiol. 1995;  72 51-57
  • 10 Gregor R J, Broker J P, Ryan M M. The biomechanics of cycling.  Exerc Sport Sci Rev. 1991;  19 127-168
  • 11 Grooten W J, Puttermans V, Larsson R J. Reliability if isokinetic supine bench press in healthy women using the Ariel Computerized Exercise System.  Scand J Med Sci Sport. 2002;  12 218-222
  • 12 Hansen E A, Andersen J L, Nielsen J S, Sjogaard G. Muscle fiber type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling.  Acta Physiol Scand. 2002;  176 185-194
  • 13 Howley E T, Basset Jr D R, Welch E G. Criteria for maximal oxygen uptake: review and commentary.  Med Sci Sports Exerc. 1995;  27 1292-1301
  • 14 Hunter A M, Clair Gibson St A, Lambert M, Noakes T D. Electromyographic (EMG) normalization method for cycle fatigue protocols.  Med Sci Sports Exerc. 2002;  34 857-861
  • 15 Kelso J AS, Scholtz J P, Schöner G. Dynamics governs switching among pattern of co-ordination in biological movement.  Phys Lett A . 1988;  134 8-12
  • 16 Kohler G, Boutellier U. The generalized force-velocity relationship explains why the preferred pedaling rate of cyclists exceeds the most efficient one.  Eur J Appl Physiol. 2005;  94 188-195
  • 17 Lucia A, Hoyos J, Chicharro J L. Physiology of professional road cycling.  Sports Med. 2001;  31 325-337
  • 18 Lucia A, San Juan A F, Montilla M, Canete S, Santalla A, Earnet C, Perez M. In professional road cyclists, low pedaling cadences are less efficient.  Med Sci Sports Exerc. 2004;  36 1048-1054
  • 19 Marsh A P, Martin P E. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences.  Med Sci Sports Exerc. 1997;  29 1225-1232
  • 20 Marsh A P, Martin P E. The association between cycling experience and preferred and most economical cadences.  Med Sci Sports Exerc. 1993;  25 1269-1274
  • 21 Marsh A P, Martin P E, Foley K O. Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling.  Med Sci Sports Exerc. 2000;  32 1630-1634
  • 22 Neptune R R, Kautz S A, Hull M L. The effect of pedalling rate on coordination in cycling.  J Biomech. 1997;  30 1051-1058
  • 23 Neptune R R, Hull M L. A theoretical analysis of preferred pedaling rate selection in endurance cycling.  J Biomech. 1999;  32 409-415
  • 24 Nesi X, Bosquet L, Pelayo P. Preferred pedal rate: an index of cycling performance.  Int J Sports Med. 2004;  25 46-49
  • 25 Osterning L R. Isokinetic dynametry: implications for muscle testing and rehabilitation.  Exerc Sport Sci Rev. 1986;  14 45-80
  • 26 Patterson R P, Moreno M I. Bicycle pedalling forces as a function of pedalling rate and power output.  Med Sci Sports Exerc. 1990;  22 512-516
  • 27 Poole D C, Richardson R S. Determinants of oxygen uptake.  Sports Med. 1997;  24 308-320
  • 28 Ryan M M, Gregor R J. EMG Profiles of lower Extremity Muscles During Cycling at Constant Workload and Cadence.  J Electromyogr Kinesiol. 1992;  2 69-80
  • 29 Takaishi T, Yasuda Y, Ono T, Moritani T. Optimal pedalling rate estimated from neuromuscular fatigue for cyclists.  Med Sci Sports Exerc. 1996;  28 1492-1497
  • 30 Vercruyssen F, Brisswalter J, Hausswirth C, Bernard T, Bernard O, Vallier J M. Influence of cycling cadence on subsequent running performance in triathletes.  Med Sci Sports Exerc. 2002;  34 530-536
  • 31 Wasserman K, Whipp B J, Koyl S N, Beaver W L. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243
  • 32 Williams K R. The relationship between mechanical and physiological energy estimates.  Med Sci Sports Exerc. 1985;  17 317-325
  • 33 Woledge R C. Possible effects of fatigue on muscle efficiency.  Acta Physiol Scand. 1998;  162 267-273

Prof. Jeanick Brisswalter

Department of Ergonomics
University of Toulon Var

Av de l'Université

83957 La Garde Cedex

France

Email: brisswalter@univ-tln.fr

    >