Pneumologie 2007; 61(6): 365-373
DOI: 10.1055/s-2007-959156
Serie: Pharmakologische Therapie
© Georg Thieme Verlag Stuttgart · New York

Neue pharmakologische Ansätze in der Therapie der COPD

New Pharmacological Options in the Therapy of COPDH.  Watz1 , F.  Kanniess1 , H.  Magnussen1, 2
  • 1Pneumologisches Forschungsinstitut am Krankenhaus Großhansdorf
  • 2Krankenhaus Großhansdorf, Zentrum für Pneumologie und Thoraxchirurgie
Further Information

Publication History

Publication Date:
10 May 2007 (online)

Zusammenfassung

Die chronisch obstruktive Bronchitis und das Lungenemphysem (chronic obstructive pulmonary disease; COPD) sind durch eine nicht vollständig reversible Verminderung des Atemflusses charakterisiert, die progredient ist und mit einer abnormen Entzündungsreaktion einhergeht. Die primär pulmonale Erkrankung wird in ihrem Verlauf durch systemische Manifestationen mitbestimmt. Da die Krankheit ursächlich auf das inhalative Rauchen zu beziehen ist, führt die Nikotinkarenz zu einer symptomatischen und prognostischen Besserung. Die wirksamste verfügbare Pharmakotherapie stellen die Bronchodilatatoren dar, deren Applikation und Wirkdauer gegenwärtig verbessert wird. Die Beeinflussung der charakteristischen pulmonalen Entzündung, die bei der COPD in den Atemwegen, dem Lungenparenchym und den Lungengefäßen nachweisbar ist, wird gegenwärtig mit einer Vielfalt von pharmakologischen Ansätzen untersucht. Die systemische Inflammation, die die COPD begleitet, ist ebenfalls eine Zielgröße der medikamentösen Therapie. Die Beurteilung der vielfältigen therapeutischen Ansätze wird dadurch erschwert, dass der gebräuchliche funktionelle Parameter der Schwere der COPD, FEV1.0, den Nutzen der Therapie nur unvollständig beschreibt. Die erfolgversprechende Entwicklung neuer therapeutischer Ansätze muss daher mit einem besseren Verständnis der für die COPD relevanten Zielgrößen einhergehen.

Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is not fully reversible, mostly progressive and associated with an abnormal inflammatory reaction. The course of this pulmonary disease is influenced by systemic inflammation and comorbidities. COPD is caused by inhaled gases and particles and therefore avoidance of inhalative smoking results in symptomatic relief and improvement of the course of the disease. Modulation of the characteristic pulmonary inflammation, which is present in airways, parenchyma and pulmonary vasculature is targeted by a variety of novel pharmacological approaches. Systemic inflammation associating COPD should also be influenced to improve the disease. Assessment of the benefits of these approaches is difficult since FEV1.0 as the most popular marker to describe the functional severity of COPD does not always reflect the benefits of the novel therapeutic strategies. Therefore new therapeutic modalities must be paralleled by the development of new clinical relevant targets.

Literatur

  • 1 Global Initiative for Chronic Obstructive Lung Disease (GOLD) Global Strategy for the Diagnosis; Management, and Prevention of Chronic Obstructive Pulmonary Disease NHLBI/WHO Workshop Report. NIH Publication 2701.2001.http://www.gold.com (accessed November22,2006) 2005
  • 2 Celli B R, Macnee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper.  Eur Respir J. 2004;  23 932-946
  • 3 Worth H, Buhl R, Cegla U. et al . [Guidelines for the diagnosis and treatment chronic obstructive bronchitis and pulmonary emphysema issued by Deutsche Atemwegsliga and Deutsche Gesellschaft fur pneumologie].  Pneumologie. 2002;  56 704-738
  • 4 Calverley P M, Walker P. Chronic obstructive pulmonary disease.  Lancet. 2003;  362 1053-1061
  • 5 Hogg J C. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease.  Lancet. 2004;  364 709-721
  • 6 Watz H, Magnussen H. [Comorbidities of COPD].  Internist (Berl). 2006;  47 895-900
  • 7 Anto J M, Vermeire P, Vestbo J. et al . Epidemiology of chronic obstructive pulmonary disease.  Eur Respir J. 2001;  17 982-994
  • 8 Pauwels R A, Rabe K F. Burden and clinical features of chronic obstructive pulmonary disease (COPD).  Lancet. 2004;  364 613-620
  • 9 Menezes A M, Perez-Padilla R, Jardim J R. et al . Chronic obstructive pulmonary disease in five Latin American cities (the PLATINO study): a prevalence study.  Lancet. 2005;  366 1875-1881
  • 10 Lokke A, Lange P, Scharling H. et al . Developing COPD: a 25 year follow up study of the general population.  Thorax. 2006;  61 935-939
  • 11 WHO .World Helath Report 2002. http://www.who.int/whr/2002 2005
  • 12 Murray C J, Lopez A D. Alternative projections of mortality and disability by cause 1990 - 2020: Global Burden of Disease Study.  Lancet. 1997;  349 1498-1504
  • 13 Murray C J, Lopez A D. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study.  Lancet. 1997;  349 1436-1442
  • 14 Murray C J, Lopez A D. Mortality by cause for eight regions of the world: Global Burden of Disease Study.  Lancet. 1997;  349 1269-1276
  • 15 Keatings V M, Collins P D, Scott D M. et al . Differences in interleukin-8 and tumor necrosis factor-α in induced sputum from patients with chronic obstructive pulmonary disease or asthma.  Am J Respir Crit Care Med. 1996;  153 530-534
  • 16 Pesci A, Balbi B, Majori M. et al . Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease.  Eur Respir J. 1998;  12 380-386
  • 17 O'Shaughnessy T C, Ansari T W, Barnes N C. et al . Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1.  Am J Respir Crit Care Med. 1997;  155 852-857
  • 18 Saetta M, Baraldo S, Corbino L. et al . CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1999;  160 711-717
  • 19 Turato G, Zuin R, Miniati M. et al . Airway inflammation in severe chronic obstructive pulmonary disease: relationship with lung function and radiologic emphysema.  Am J Respir Crit Care Med. 2002;  166 105-110
  • 20 Montuschi P, Kharitonov S A, Ciabattoni G. et al . Exhaled leukotrienes and prostaglandins in COPD.  Thorax. 2003;  58 585-588
  • 21 Profita M, Giorgi R D, Sala A. et al . Muscarinic receptors, leukotriene B4 production and neutrophilic inflammation in COPD patients.  Allergy. 2005;  60 1361-1369
  • 22 Hellermann G R, Nagy S B, Kong X. et al . Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells.  Respir Res. 2002;  3 22
  • 23 Mio T, Romberger D J, Thompson A B. et al . Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells.  Am J Respir Crit Care Med. 1997;  155 1770-1776
  • 24 Morrison D, Rahman I, Lannan S. et al . Epithelial permeability, inflammation, and oxidant stress in the air spaces of smokers.  Am J Respir Crit Care Med. 1999;  159 473-479
  • 25 Takeyama K, Dabbagh K, Jeong S J. et al . Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils.  J Immunol. 2000;  164 1546-1552
  • 26 Tuder R M, Zhen L, Cho C Y. et al . Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade.  Am J Respir Cell Mol Biol. 2003;  29 88-97
  • 27 Barnes P J, Shapiro S D, Pauwels R A. Chronic obstructive pulmonary disease: molecular and cellular mechanisms.  Eur Respir J. 2003;  22 672-688
  • 28 Higashimoto Y, Yamagata Y, Iwata T. et al . Increased serum concentrations of tissue inhibitor of metalloproteinase-1 in COPD patients.  Eur Respir J. 2005;  25 885-890
  • 29 Hogg J C, Senior R M. Chronic obstructive pulmonary disease - part 2: pathology and biochemistry of emphysema.  Thorax. 2002;  57 830-834
  • 30 Shapiro S D. Proteinases in chronic obstructive pulmonary disease.  Biochem Soc Trans. 2002;  30 98-102
  • 31 Vignola A M, Paganin F, Capieu L. et al . Airway remodelling assessed by sputum and high-resolution computed tomography in asthma and COPD.  Eur Respir J. 2004;  24 910-917
  • 32 Ito I, Nagai S, Handa T. et al . Matrix metalloproteinase-9 promoter polymorphism associated with upper lung dominant emphysema.  Am J Respir Crit Care Med. 2005;  172 1378-1382
  • 33 Mullen J B, Wright J L, Wiggs B R. et al . Reassessment of inflammation of airways in chronic bronchitis.  Br Med J (Clin Res Ed). 1985;  291 1235-1239
  • 34 Saetta M, Di Stefano A, Maestrelli P. et al . Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis.  Am Rev Respir Dis. 1993;  147 301-306
  • 35 Saetta M, Turato G, Facchini F M. et al . Inflammatory cells in the bronchial glands of smokers with chronic bronchitis.  Am J Respir Crit Care Med. 1997;  156 1633-1339
  • 36 Burgel P R, Nadel J A. Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium.  Thorax. 2004;  59 992-996
  • 37 Nadel J A, Burgel P R. The role of epidermal growth factor in mucus production.  Curr Opin Pharmacol. 2001;  1 254-258
  • 38 Hogg J C, Chu F, Utokaparch S. et al . The nature of small-airway obstruction in chronic obstructive pulmonary disease.  N Engl J Med. 2004;  350 2645-2653
  • 39 Hogg J C, Macklem P T, Thurlbeck W M. Site and nature of airway obstruction in chronic obstructive lung disease.  N Engl J Med. 1968;  278 1355-1360
  • 40 Aoshiba K, Yokohori N, Nagai A. Alveolar wall apoptosis causes lung destruction and emphysematous changes.  Am J Respir Cell Mol Biol. 2003;  28 555-562
  • 41 Ohnishi K, Takagi M, Kurokawa Y. et al . Matrix metalloproteinase-mediated extracellular matrix protein degradation in human pulmonary emphysema.  Lab Invest. 1998;  78 1077-1087
  • 42 Tuder R M, Petrache I, Elias J A. et al . Apoptosis and emphysema: the missing link.  Am J Respir Cell Mol Biol. 2003;  28 551-554
  • 43 Wright J L, Lawson L, Pare P D. et al . The structure and function of the pulmonary vasculature in mild chronic obstructive pulmonary disease. The effect of oxygen and exercise.  Am Rev Respir Dis. 1983;  128 702-707
  • 44 Santos S, Peinado V I, Ramirez J. et al . Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2003;  167 1250-1256
  • 45 Peinado V I, Barbera J A, Ramirez J. et al . Endothelial dysfunction in pulmonary arteries of patients with mild COPD.  Am J Physiol. 1998;  274 L908-L913
  • 46 Gan W Q, Man S F, Senthilselvan A. et al . Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis.  Thorax. 2004;  59 574-580
  • 47 Sin D D, Man S F. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease.  Circulation. 2003;  107 1514-1519
  • 48 Broekhuizen R, Wouters E F, Creutzberg E C. et al . Raised CRP levels mark metabolic and functional impairment in advanced COPD.  Thorax. 2006;  61 17-22
  • 49 Man S F, Connett J E, Anthonisen N R. et al . C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease.  Thorax. 2006;  61 849-853
  • 50 Dahl M, Vestbo J, Lange P. et al . C-reactive Protein as a Predictor of Prognosis in COPD.  Am J Respir Crit Care Med. 2006;  Oct 19; [Epub ahead of print]
  • 51 Rennard S I. Treatment of stable chronic obstructive pulmonary disease.  Lancet. 2004;  364 791-802
  • 52 Sutherland E R, Cherniack R M. Management of chronic obstructive pulmonary disease.  N Engl J Med. 2004;  350 2689-2697
  • 53 COMBIVENT Inhalation Aerosol Study Group . In chronic obstructive pulmonary disease, a combination of ipratropium and albuterol is more effective than either agent alone. An 85-day multicenter trial.  Chest. 1994;  105 1411-1419
  • 54 Noord J A van, Aumann J L, Janssens E. et al . Comparison of tiotropium once daily, formoterol twice daily and both combined once daily in patients with COPD.  Eur Respir J. 2005;  26 214-22
  • 55 Noord J A van, Aumann J L, Janssens E. et al . Effects of tiotropium with and without formoterol on airflow obstruction and resting hyperinflation in patients with COPD.  Chest. 2006;  129 509-517
  • 56 Tashkin D P, Cooper C B. The role of long-acting bronchodilators in the management of stable COPD.  Chest. 2004;  125 249-259
  • 57 Decramer M, Gosselink R, Bartsch P. et al . Effect of treatments on the progression of COPD: report of a workshop held in Leuven, 11 - 12 March 2004.  Thorax. 2005;  60 343-349
  • 58 Anthonisen N R. Lessons from the Lung Health Study.  Proc Am Thorac Soc. 2004;  1 143-145
  • 59 Tashkin D P. The role of patient-centered outcomes in the course of chronic obstructive pulmonary disease: how long-term studies contribute to our understanding.  Am J Med. 2006;  119 63-72
  • 60 Burge P S, Calverley P M, Jones P W. et al . Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial.  BMJ. 2000;  320 1297-1303
  • 61 Szafranski W, Cukier A, Ramirez A. et al . Efficacy and safety of budesonide/formoterol in the management of chronic obstructive pulmonary disease.  Eur Respir J. 2003;  21 74-781
  • 62 Lung Health Study Research Group . Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease.  N Engl J Med. 2000;  343 1902-1909
  • 63 Pauwels R A, Lofdahl C G, Laitinen L A. et al . Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. European Respiratory Society Study on Chronic Obstructive Pulmonary Disease.  N Engl J Med. 1999;  340 1948-1953
  • 64 Vestbo J, Sorensen T, Lange P. et al . Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial.  Lancet. 1999;  353 1819-1823
  • 65 Sin D D, Tu J V. Inhaled corticosteroids and the risk of mortality and readmission in elderly patients with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2001;  164 580-584
  • 66 Sin D D, Wu L, Anderson J A. et al . Inhaled corticosteroids and mortality in chronic obstructive pulmonary disease.  Thorax. 2005;  60 992-997
  • 67 Culpitt S V, Maziak W, Loukidis S. et al . Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1999;  160 1635-1639
  • 68 Keatings V M, Jatakanon A, Worsdell Y M. et al . Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD.  Am J Respir Crit Care Med. 1997;  155 542-548
  • 69 Loppow D, Schleiss M B, Kanniess F. et al . In patients with chronic bronchitis a four week trial with inhaled steroids does not attenuate airway inflammation.  Respir Med. 2001;  95 115-121
  • 70 Barnes P J, Stockley R A. COPD: current therapeutic interventions and future approaches.  Eur Respir J. 2005;  25 1084-1106
  • 71 Sin D D, Lacy P, York E. et al . Effects of fluticasone on systemic markers of inflammation in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2004;  170 760-765
  • 72 Kirsten D K, Wegner R E, Jorres R A. et al . Effects of theophylline withdrawal in severe chronic obstructive pulmonary disease.  Chest. 1993;  104 1101-1107
  • 73 Cazzola M, Gabriella M M. The additive effect of theophylline on a combination of formoterol and tiotropium in stable COPD: A pilot study.  Respir Med. 2006;  Oct 20; [Epub ahead of print]
  • 74 Culpitt S V, De Matos C, Russell R E. et al . Effect of theophylline on induced sputum inflammatory indices and neutrophil chemotaxis in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2002;  165 1371-1376
  • 75 Barnes P J, Ito K, Adcock I M. Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase.  Lancet. 2004;  363 731-733
  • 76 Barnes P J. Theophylline in chronic obstructive pulmonary disease: new horizons.  Proc Am Thorac Soc. 2005;  2 334-339
  • 77 Gotfried M H. Macrolides for the treatment of chronic sinusitis, asthma, and COPD.  Chest. 2004;  125 52S-60S
  • 78 Manning M W, Cassis L A, Daugherty A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms.  Arterioscler Thromb Vasc Biol. 2003;  23 483-488
  • 79 Langley S J. et al .Effect of oral doxycycline on MMP-TIMP levels in induced sputum in subjects with COPD. A pilot study. ATS Poster (F18) San Diego 2005
  • 80 Suzuki T, Yanai M, Yamaya M. et al . Erythromycin and common cold in COPD.  Chest. 2001;  120 730-733
  • 81 Endres M. Statins: potential new indications in inflammatory conditions.  Atheroscler Suppl. 2006;  7 31-35
  • 82 Devaraj S, Chan E, Jialal I. Direct demonstration of an antiinflammatory effect of simvastatin in subjects with the metabolic syndrome.  J Clin Endocrinol Metab. 2006;  91 4489-4496
  • 83 Baigent C, Keech A, Kearney P M. et al . Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins.  Lancet. 2005;  366 1267-1278
  • 84 Soyseth V, Brekke P H, Smith P. et al . Statin use is associated with reduced mortality in chronic obstructive pulmonary disease.  Eur Respir J. 2006;  Oct 18; [Epub ahead of print]
  • 85 Mancini G B, Etminan M, Zhang B. et al . Reduction of morbidity and mortality by statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease.  J Am Coll Cardiol. 2006;  47 2554-2560
  • 86 Lee J H, Lee D S, Kim E K. et al . Simvastatin Inhibits Cigarette Smoking-induced Emphysema and Pulmonary Hypertension in Rat Lungs.  Am J Respir Crit Care Med. 2005;  172 987-993
  • 87 Dekhuijzen P N. Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease.  Eur Respir J. 2004;  23 629-636
  • 88 Decramer M, Rutten-van Molken M, Dekhuijzen P N. et al . Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial.  Lancet. 2005;  365 1552-1560
  • 89 Demedts M, Behr J, Buhl R. et al . High-dose acetylcysteine in idiopathic pulmonary fibrosis.  N Engl J Med. 2005;  353 2229-2242
  • 90 Meyer A, Buhl R, Kampf S. et al . Intravenous N-acetylcysteine and lung glutathione of patients with pulmonary fibrosis and normals.  Am J Respir Crit Care Med. 1995;  152 1055-1060
  • 91 Churg A, Dai J, Tai H. et al . Tumor necrosis factor-α is central to acute cigarette smoke-induced inflammation and connective tissue breakdown.  Am J Respir Crit Care Med. 2002;  166 849-854
  • 92 Churg A, Wang R D, Tai H. et al . Tumor necrosis factor-α drives 70 % of cigarette smoke-induced emphysema in the mouse.  Am J Respir Crit Care Med. 2004;  170 492-498
  • 93 Vernooy J H, Kucukaycan M, Jacobs J A. et al . Local and systemic inflammation in patients with chronic obstructive pulmonary disease: soluble tumor necrosis factor receptors are increased in sputum.  Am J Respir Crit Care Med. 2002;  166 1218-1224
  • 94 Di Francia M, Barbier D, Mege J L. et al . Tumor necrosis factor-α levels and weight loss in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1994;  150 1453-1455
  • 95 van der Vaart H, Koeter G H, Postma D S. et al . First study of infliximab treatment in patients with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2005;  172 465-469
  • 96 Cazzola M, Matera M G, Lotvall J. Ultra long-acting β2-agonists in development for asthma and chronic obstructive pulmonary disease.  Expert Opin Investig Drugs. 2005;  14 775-783
  • 97 Rennard S I, Bantje T, Higgins D J. et al .Indacaterol, a novel once-daily β2-agonist, provides 24-hour bronchodilator efficacy in moderate-to-severe COPD. ATS Poster (A118) San Diego 2006
  • 98 Kanniess F, Cameron R, Owen R. et al .Indacaterol, a novel β2-agonist, demonstrates 24-hour efficacy and is well tolerated in patients with asthma: a multiple-dose, dose-ranging study. ERS (P1729) Kopenhagen 2005
  • 99 Kottakis I, Nandeuil A, Raptis H. et al .Efficacy of the novel very long-acting β2-agonist carmoterol following 7 days once daily dosing: comparison with twice daily formoterol in patient with persistent asthma. ERS (P3858) Munich 2006
  • 100 Aubier M, Duval X, Knight H. et al .Indacaterol, a novel 24-hour β2-agonist, is effective and well tolerated on multiple dosing in patients with mild to moderate COPD. ERS (P1920) Kopenhagen 2005
  • 101 Chuchalin A G, Tsoi A, Richter K. et al .Cardiovascular safety of indacaterol, a novel 24-hour β2-agonist, in patients with stable asthma. ERS (P1728) Kopenhagen 2005
  • 102 Beier J, Jack D, Bao W. et al .Safety of multiple-dose indacaterol, a novel 24-hour β2-agonist, in moderate to severe COPD. ERS (P1965) Kopenhangen 2005
  • 103 Linberg S E, Heyman E R, Nandeuil A. et al .Cardiac safety of the novel very long-acting β2-agonist carmoterol following single rising doses in healthy volunteers. ERS (P3861) Munich 2006
  • 104 Nandeuil A, Kottakis I, Raptis H. et al .Safety and tolerability of the novel very long acting β2-agonist Carmoterol given as a 2 µg qd dose; 8 days comparison with formoterol and placebo in patients with persistent asthma. ERS (P3859) Munich 2006
  • 105 Schelfhout V J, Joos G F, Ferrer P. et al . Activity of LAS 34 273, a new long-acting anticholinergic antagonist.  Am J Respir Crit Care Med. 2003;  167 A93
  • 106 Singh D, Corris P A, Tansley R. NVA237, a once-daily inhaled anticholinergic, provides 24-hour bronchodilator efficacy in patients with moderate-to-severe COPD. ERS (P3051) Munich 2006
  • 107 Hansel T T, Neighbour H, Erin E M. et al . Glycopyrrolate causes prolonged bronchoprotection and bronchodilatation in patients with asthma.  Chest. 2005;  128 1974-1979
  • 108 Acerbi D, Brambilla G, Kottakis I. Advances in asthma and COPD management: Delivering CFC-free inhaled therapy using Modulite((R)) technology.  Pulm Pharmacol Ther. 2006;  May 27; [Epub ahead of print]
  • 109 Lipworth B J. Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease.  Lancet. 2005;  365 167-175
  • 110 Rabe K F, Magnussen H, Dent G. Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants.  Eur Respir J. 1995;  8 637-642
  • 111 Gamble E, Grootendorst D C, Brightling C E. et al . Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2003;  168 976-982
  • 112 Compton C H, Gubb J, Nieman R. et al . Cilomilast, a selective phosphodiesterase-4 inhibitor for treatment of patients with chronic obstructive pulmonary disease: a randomised, dose-ranging study.  Lancet. 2001;  358 265-270
  • 113 Rabe K F, Bateman E D, O'Donnell D. et al . Roflumilast - an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial.  Lancet. 2005;  366 563-571
  • 114 Gutke H J, Guse J H, Khobzaoui M. et al . AWD-12 - 281 (inhaled) (elbion/GlaxoSmithKline).  Curr Opin Investig Drugs. 2005;  6 1149-1158
  • 115 Wise R A, Littner M R, Zangh P. et al .Clinical evaluation of a new inhibitor of neutrophilic inflammation, tetomilast (OPC-6535), in chronic obstructive pulmonary disease (COPD). ERS (P3052) Munich 2006
  • 116 Mahler D A, Huang S, Tabrizi M. et al . Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study.  Chest. 2004;  126 926-934
  • 117 Groenke L, Beeh K M, Cameron R. et al . LTB 019, a leukotriene recetor antagonist, has no effect on the levels of neutrophils, mPO, Il-8 and TNF-α in induced sputum of COPD patients in vivo.  Am J Respir Crit Care Med. 2002;  165 A598
  • 118 Donnelly L E, Barnes P J. Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease.  Trends Pharmacol Sci. 2006;  27 546-553
  • 119 Hipkin R W, Minnicozzi M, Fan X. et al .SCH 527 123 Is a Selective and Potent CXCR1/2 Antagonist Which Inhibits Neutrophil Recruitment and Mucus Production in Experimental Models of Obstructive Pulmonary Inflammation. ATS (C106) San Diego 2006
  • 120 Holz O, Jorres R A, Timm P. et al . Ozone-induced airway inflammatory changes differ between individuals and are reproducible.  Am J Respir Crit Care Med. 1999;  159 776-784
  • 121 Holz O, Tal-Singer R, Kanniess F. et al . Validation of the human ozone challenge model as a tool for assessing anti-inflammatory drugs in early development.  J Clin Pharmacol. 2005;  45 498-503
  • 122 Smith S J, Fenwick P S, Nicholson A G. et al . Inhibitory effect of p38 mitogen-activated protein kinase inhibitors on cytokine release from human macrophages.  Br J Pharmacol. 2006;  149 393-404
  • 123 Anthonisen N R, Connett J E, Murray R P. Smoking and lung function of Lung Health Study participants after 11 years.  Am J Respir Crit Care Med. 2002;  166 675-679
  • 124 Simmons M S, Connett J E, Nides M A. et al . Smoking reduction and the rate of decline in FEV1: results from the Lung Health Study.  Eur Respir J. 2005;  25 1011-1017
  • 125 Harris D S, Anthenelli R M. Expanding treatment of tobacco dependence.  Curr Psychiatry Rep. 2005;  7 344-351
  • 126 Dale L, Anthenelli R. Rimonabant as an Aid to Smoking Cessation in Smokers Motivated to Quit. ACC Abstract, March 2004.  Circulation. 2004;  109 e9017-e9027
  • 127 Jorenby D E, Leischow S J, Nides M A. et al . A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation.  N Engl J Med. 1999;  340 685-691
  • 128 Tashkin D, Kanner R, Bailey W. et al . Smoking cessation in patients with chronic obstructive pulmonary disease: a double-blind, placebo-controlled, randomised trial.  Lancet. 2001;  357 1571-1575
  • 129 Vestbo J, Hogg J C. Convergence of the epidemiology and pathology of COPD.  Thorax. 2006;  61 86-88
  • 130 Cohn L. Mucus in chronic airway diseases: sorting out the sticky details.  J Clin Invest. 2006;  116 306-308
  • 131 The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop.  Am Rev Respir Dis. 1985;  132 182-185
  • 132 Ong D E, Chytil F. Changes in levels of cellular retinol- and retinoic-acid-binding proteins of liver and lung during perinatal development of rat.  Proc Natl Acad Sci USA. 1976;  73 3976-3978
  • 133 Behnke M, Wewel A R, Kirsten D. et al . Exercise training raises daily activity stronger than predicted from exercise capacity in patients with COPD.  Respir Med. 2005;  99 711-717
  • 134 Roth M D, Connett J E, D'Armiento J M. et al . Feasibility of retinoids for the treatment of emphysema study.  Chest. 2006;  130 1334-1345
  • 135 Schachinger V, Erbs S, Elsasser A. et al . Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.  N Engl J Med. 2006;  355 1210-1221
  • 136 Griffiths M J, Bonnet D, Janes S M. Stem cells of the alveolar epithelium.  Lancet. 2005;  366 249-260
  • 137 Kruse M, Stahlmann R. Neue Antibiotika.  Pneumologie. 2006;  60 417-427
  • 138 Serke M. Pharmakologische Therapie des Bronchialkarzinoms.  Pneumologie. 2006;  60 493-508
  • 139 von Hagen L, Zabel P, Welte T, Groneberg D A. Pharmakotherapie bei Schwerem Akutem Respiratorischen Syndrom (SARS).  Pneumologie. 2006;  60 694-700
  • 140 Serke M. Pharmakologische Therapie des Lungenkarzinoms.  Pneumologie. 2007;  61 162-170

Prof Dr. Helgo Magnussen

Krankenhaus Großhansdorf Zentrum für Pneumologie und Thoraxchirurgie

Wöhrendamm 80

22927 Großhansdorf

Email: Magnussen@pulmoresearch.de

    >