Der Nuklearmediziner 2007; 30(1): 70-82
DOI: 10.1055/s-2006-955214
Molekulare Bildgebung

© Georg Thieme Verlag Stuttgart · New York

FDOPA-PET als Paradigma molekularer Bildgebung in der Onkologie

FDOPA-PET as a Paradigm of Molecular Imaging in OncologyI. Brink1 , M. Hentschel1 , H. P. H. Neumann2 , O. Schäfer3 , E. Moser1
  • 1Radiologische Universitätsklinik, Abteilung Nuklearmedizin, Universitätsklinikum Freiburg
  • 2Medizinische Klinik, Abteilung Nephrologie und Allgemeinmedizin, Universitätsklinikum Freiburg
  • 3Abteilung Diagnostische Radiologie, Universitätsklinikum Freiburg
Further Information

Publication History

Publication Date:
14 March 2007 (online)

Zusammenfassung

In der Diagnostik der Parkinsonerkrankungen hat der PET-Tracer 6-[18F]fluoro-L-3,4-dihydroxyphenylalanin (FDOPA) weite Verbreitung gefunden. Die Aminosäure ist als wichtiger Baustein im Proteinstoffwechsel und als Vorstufe in der Katecholaminsynthese auch zur Untersuchung einer Vielzahl, vor allem neuroendokriner, Tumore geeignet. Die spezifischen Anreicherungsmechanismen des FDOPA lassen diesen Radiotracer als ein Musterbeispiel der „Molekularen Bildgebung” erscheinen. Die vorliegende Arbeit fasst eigene Erfahrungen und die publizierten Ergebnisse onkologischer PET-Untersuchungen mit FDOPA zusammen und bewertet den Stellenwert der Methode bei klinischen Fragestellungen. Hervorragende Ergebnisse werden vor allem im Staging von Phäochromozytomen und Paragangliomen sowie Serotonin-positiven neuroendokrinen Tumoren des gastroenteropankreatischen Systems (NET-GEP) erreicht. In der schwierigen Rezidivdiagnostik medullärer Schilddrüsenkarzinome erweitert FDOPA die Palette der Untersuchungsmöglichkeiten. Auch in der Diagnostik von Hirntumoren bietet sich FDOPA als Alternative zu 11C-markierten Aminosäuren an. Erste Arbeiten zeigten eine hohe Genauigkeit in der Unterscheidung zwischen Tumorrezidiv und Strahlennekrose sowohl bei hoch- als auch bei niedrig-differenzierten Tumoren. Des Weiteren korreliert die FDOPA-Speicherung mit der Expression von Proliferationsmarkern. Therapierelevant ist heute die nichtinvasive Differenzierung einer fokalen von der diffusen Form des kongenitalen Hyperinsulinismus, der kleinere operative Eingriffe erlaubt und vielen betroffenen Kindern eine Prognose ohne Diabetes mellitus ermöglicht.

Abstract

In recent years, positron emission tomography with 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) has become a wide-spread method in the diagnostics of Parkinson's disease. The amino acid is an important component in protein metabolism. As a precursor in the synthesis of catecholamines it is also of use in metabolic imaging of a variety, mostly neuroendocrine, tumors. The specific uptake mechanisms make FDOPA a paradigm of metabolic imaging. The current review assesses the value of the tracer in the diagnostics of different oncological diseases. It summarizes own experiences and the published results of oncological FDOPA PET-studies. Above all, there is a very high impact of FDOPA in the staging of pheochromocytomas and paragangliomas as well as serotonin-positive neuroendocrine tumors of the gastroentero-pancreatic system (NET-GEPs). Additionally, FDOPA extends the diagnostic possibilities in recurrent medullary thyroid cancer. In the imaging of tumors of the central nervous system, FDOPA represents an alternative to 11C-labelled PET-tracers. First reports show a high accuracy in the differentiation of radiation induced necrosis and recurrent disease in both high and low grade brain tumors. Furthermore, there is a correlation between the uptake of FDOPA and the expression of proliferation markers. Today, the noninvasive differentiation of focal and diffuse congenital hyperinsulinism has therapeutic consequences. In cases of focal disease, the extent of pancreas resection can be limited resulting in better prognosis without diabetes mellitus.

Literatur

  • 1 Martin W RW, Palmer M R, Patlak C S, Calne D B. Nigrostriatal function in humans studied with positron emission tomography.  Ann Neurol. 1989;  26 535-542
  • 2 Shinotoh H. Neuroimaging of PD, PSP, CBD and MSA-PET and SPECT studies.  J Neurol. 2006;  253 (Suppl 3) iii30-iii34
  • 3 Cumming P, Boyes B E, Martin W RW, Adam M, Grierson J, Ruth T, McGeer E G. The metabolism of [18F]6-Fluoro-3,4-dihydroxyphenylalanine in the hooded rat.  J Neurochem. 1987;  48 601-608
  • 4 Firnau G, Sood S, Chirakal R, Nahmias C, Garnett E S. Cerebral metabolism of [18F]6-Fluoro-3,4-dihydroxyphenylalanine in the primate.  J Neurochem. 1987;  48 1077-1082
  • 5 Hoffman J M, Melega W P, Hawk T C, Grafton S C, Luxen A, Mahoney D K, Barrio J R, Huang S C, Mazziotta J C, Phelps M E. The effects of carbidopa administration on 6-[18F]-Fluoro-3,4-dihydroxyphenylalanine kinetics in positron emission tomography.  J Nucl Med. 1992;  33 1472-1477
  • 6 Huang S C, Yu D C, Barrio J R, Grafton S, Melega W P, Hoffman J M, Satyamurthy N, Mazziotta J C, Phelps M E. Kinetics and modelling of L-6-[18F]Fluoro-DOPA in human positron emission tomographic studies.  J Cereb Blood Flow Metab. 1991;  11 898-913
  • 7 Luxen A, Guillaume M, Melega W P, Pike V W, Solin O, Wagner R. Production of 6-[18F]-Fluoro-L-DOPA and its metabolism - a critical review.  Nucl Med Biol. 1992;  19 149-158
  • 8 Boyes B E, Cumming P, Martin W RW, McGeer E G. Determination pf plasma [18F]6-Fluorodopa during positron emission tomography: elimination and metabolism in carbidopa treated subjects.  Life sciences. 1986;  39 2243-2252
  • 9 Wahl L, Nahmias C. Modeling of Fluorine-18-6-Fluoro-L-Dopa in humans.  J Nucl Med. 1996;  37 432-437
  • 10 Cumming P, Leger G C, Kuwabara H, Gjedde A. Pharmacokinetics of plasma 6-[18F]Fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA) in humans.  J Cereb Blood Flow Metabolism. 1993;  13 668-675
  • 11 Melega W P, Hoffmann J M, Luxen A, Nissenson C HK, Phelps M E, Barrio J R. The effects of carbidopa on the metabolism of [18F]6-Fluoro-L-dopa in rats, monkeys, and humans.  Life sciences. 1990;  47 149-157
  • 12 Beuthien-Baumann B, Bredow J, Burchert W, Fuchtner F, Bergmann R, Alheit H D, Reiss G, Hliscs R, Steinmeier R, Franke W G, Johannsen B, Kotzerke J. 3-O-methyl-6-[18F]fluoro-L-DOPA and its evaluation in brain tumour imaging.  Eur J Nucl Med Mol Imaging. 2003;  30 1004-1008
  • 13 Beuthien-Baumann B, Alheit H, Oehme L, Winkler C, Füchtner F, Höpping A, Kotzerke J. Bestrahlungsplanung von Hirntumoren unter Berücksichtigung von F-18-3-O-methyl-fluorodopa (OMFT) und Positronen-Emissions-Tomografie (PET).  Nuklearmedizin. 2006;  45 A71 , abstract V183
  • 14 Ilias I, Yu J, Carrasquillo J A, Chen C C, Eisenhofer G, Whatley M, McElroy B, Pacak K. Superiority of 6-[(18)f]-fluorodopamine positron emission tomography versus [(131)i]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma.  J Clin Endocrinol Metab. 2003;  88 4083-4087
  • 15 Pacak K, Eisenhofer G, Carasquillo J A, Chen C C, Li S T, Goldstein D S. [18F]fluorodopamine positron emission tomographic (PET) scanning for diagnostic localization of pheochromocytoma.  Hypertension. 2001;  38 6-8
  • 16 Hoegerle S, Nitzsche E, Altehoefer C, Ghanem N, Manz T, Brink I, Reincke M, Moser E, Neumann H P. Pheochromocytomas: detection with 18F DOPA whole-body PET - initial results.  Radiology. 2003;  222 507-512
  • 17 Hoegerle S, Ghanem N, Altehoefer C, Schipper J, Brink I, Moser E, Neumann H P. 18F-DOPA positron emission tomography for the detection of glomus tumours.  Eur J Nucl Med Mol Imaging. 2003;  30 689-694
  • 18 Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller C F, Scheruebl H, Moser E, Nitzsche E. Whole-body 18F DOPA PET for detection of gastrointestinal carcinoid tumors.  Radiology. 2001;  220 373-380
  • 19 Becherer A, Szabo M, Karanikas G, Wunderbaldinger P, Angelberger P, Raderer M, Kurtaran A, Dudczak R, Kletter K. Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET.  J Nucl Med. 2004;  45 1161-1167
  • 20 Helisch A, Fottner C, Schreckenberger M, Weber M, Bartenstein P. Pre-therapeutic localisation of multifocal pheochromocytomas and paragangliomas. Superiority of F-18-DOPA PET vs. Iodine-123-MIBG scintigraphy.  J Nucl Med. 2006;  47 (suppl. 1) 81P ,  abstract 228
  • 21 Koopmans K P, de Vries E G, Kema I P, Elsinga P H, Neels O C, Sluiter W J, van der Horst-Schrivers A N, Jager P L. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study.  Lancet Oncol. 2006;  7 728-734
  • 22 Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E. 18F DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels.  Eur J Nucl Med. 2001;  28 64-71
  • 23 Mottaghy F, Karges W, Zeich K, Blumstein N M, Neumaier B, Buck A K, Reske S N. Detection of recurrent medullary thyroid carcinoma (MTC) by F-18-DOPA PET/CT.  J Nucl Med. 2006;  47 (suppl. 1) 165P ,  abstract 472
  • 24 Chen W, Silverman D H, Delaloye S, Czernin J, Kamdar N, Pope W, Satyamurthy N, Schiepers C, Cloughesy T. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy.  J Nucl Med. 2006;  47 904-911
  • 25 Koopmans K P, Brouwers A H, De Hooge M N, Van der Horst-Schrivers A N, Kema I P, Wolffenbuttel B H, De Vries E G, Jager P L. Carcinoid crisis after injection of 6-18F-fluorodihydroxyphenylalanine in a patient with metastatic carcinoid.  J Nucl Med. 2005;  46 1240-1243
  • 26 Brown W D, Oakes T R, DeJesus O T, Taylor M D, Roberts A D, Nickles R J, Holden J E. Fluorine-18-fluoro-L-DOPA dosimetry with carbidopa pretreatment.  J Nucl Med. 1998;  39 1884-1891
  • 27 Knapp W H. Guidelines for tumor diagnosis with (F-18)-fluorodeoxyglucose (FDG).  Nuklearmedizin. 1999;  38 267-269
  • 28 Neumann H PH, Berger D P, Sigmund G, Blum U, Schmidt D, Parmer R J, Volk B, Kirste G. Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel-Lindau disease.  N Engl J Med. 1993;  329 1531-1538
  • 29 Nuenberg D. Ultrasound of adrenal gland tumours and indications for fine needle biopsy (uFNB).  Ultraschall Med. 2005;  26 458-469
  • 30 Kann P H, Kann B, Fassbender W J, Forst T, Bartsch D K, Langer P. Small neuroendocrine pancreatic tumors in multiple endocrine neoplasia type 1 (MEN1): least significant change of tumor diameter as determined by endoscopic ultrasound (EUS) imaging.  Exp Clin Endocrinol Diabetes. 2006;  114 361-365
  • 31 Goldstein R E, O'Neill Jr J A, Holcomb 3rd  G W, Morgan 3rd  W M, Neblett 3rd  W W, Oates J A, Brown N, Nadeau J, Smith B, Page D L, Abumrad N N, Scott Jr H W. Clinical experience over 48 years with pheochromocytoma.  Ann Surg. 1999;  229 755-764
  • 32 Maurea S, Cuocolo A, Reynolds J C, Neumann R D, Salvatore M. Diagnostic imaging in patients with paragangliomas. Computed tomography, magnetic resonance and MIBG scintigraphy comparison.  Q J Nucl Med. 1996;  40 365-371
  • 33 Mannelli M, Ianni L, Cilotti A, Conti A. Pheochromocytoma in Italy: a multicentric retrospective study.  Eur J Endocrinol. 1999;  141 619-624
  • 34 Quint L E, Glazer G M, Francis I R, Shapiro B, Chenevert T L. Pheochromocytoma and paraganlioma: comparison of MRI imaging with CT and I-131 MIBG scintigraphy.  Radiology. 1987;  165 89-93
  • 35 Velchik M G, Alavi A, Kressel H Y, Engelman K. Localization of pheochromocytoma: MIGB, CT, and MRI correlation.  J Nucl Med. 1989;  30 328-336
  • 36 Varghese J C, Hahn P F, Papanicolaou N, Mayo-Smith W W, Gaa J A, Lee M J. MR differentiation of phaeochromocytoma from other adrenal lesions based on qualitative analysis of T2 relaxation times.  Clin Radiol. 1997;  52 603-606
  • 37 Hoefnagel C A. Metaiodobenzylguanidin and somatostatin in oncology: role in the management of neural crest tumours.  Eur J Nucl Med. 1994;  21 561-581
  • 38 Bombardieri E, Seregni E, Villano C, Chiti A, Bajetta E. Position of nuclear medicine modalities in the diagnostic work-up of breast cancer.  Q J Nucl Med Mol Imaging. 2004;  48 109-118
  • 39 Shulkin B L, Thomson N W, Shapiro B, Francis I R, Sisson J C. Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET.  Radiology. 1999;  212 35-41
  • 40 Bergstrom M, Eriksson B, Oberg K, Sundin A, Ahlstrom H, Lindner K J, Bjurling P, Langstrom B. In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of carbon-11-dopamine.  J Nucl Med. 1996;  37 32-37
  • 41 Brink I, Schaefer O, Walz M, Neumann H P. Fluorine-18 DOPA PET imaging of paraganglioma syndrome.  Clin Nucl Med. 2006;  31 39-41
  • 42 Solcia E, Klöppel G, Sobin L H. Histological Typing of endocrine Tumors. 2nd edn. Springer, Berlin, Heidelberg, New York 2000
  • 43 Tiling N, Ricke J, Wiedenmann B. Neuroendokrine Tumoren des gastroenteropankreatischen Systems (GEP-NET).  Internist. 2002;  43 210-218
  • 44 Caplin M E, Buscombe J R, Hilson A J, Jones A L, Watkinson A F, Burroughs A K. Carcinoid tumour.  Lancet. 1998;  352 799-805
  • 45 Kaltsas G, Korbonits M, Heintz E, Mukherjee J J, Jenkins P J, Chew S L, Reznek R, Monson J P, Besser G M, Foley R, Britton K E, Grossman A B. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors.  J Clin Endocrinol Metab. 2001;  86 895-902
  • 46 Pacak K, Eisenhofer G, Goldstein D S. Functional imaging of endocrine tumors: role of positron emission tomography.  Endocr Rev. 2004;  25 568-580
  • 47 Vesselle H, Schmidt R A, Pugsley J M, Li M, Kohlmyer S G, Vallires E, Wood D E. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography.  Clin Cancer Res. 2000;  6 3837-3844
  • 48 Higashi K, Ueda Y, Ayabe K, Sakurai A, Seki H, Nambu Y, Oguchi M, Shikata H, Taki S, Tonami H, Katsuda S, Yamamoto I. FDG PET in the evaluation of the aggressiveness of pulmonary adenocarcinoma: correlation with histopathological features.  Nucl Med Commun. 2000;  21 707-714
  • 49 Koukouraki S, Strauss L G, Georgoulias V, Eisenhut M, Haberkorn U, Dimitrakopoulou-Strauss A. Comparison of the pharmacokinetics of (68)Ga-DOTATOC and [(18)F]FDG in patients with metastatic neuroendocrine tumours scheduled for (90)Y-DOTATOC therapy.  Eur J Nucl Med Mol Imaging. 2006;  33 1115-1122
  • 50 Kowalski J, Henze M, Schuhmacher J, Macke H R, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors.  Mol Imaging Biol. 2003;  5 42-48
  • 51 Montravers F, Grahek D, Kerrou K, Ruszniewski P, de Beco V, Aide N, Gutman F, Grange J D, Lotz J P, Talbot J N. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors?.  J Nucl Med. 2006;  47 1455-1462
  • 52 Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Skogseid B, Langstrom B, Bergstrom M, Eriksson B. Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography.  J Clin Endocrinol Metab. 2005;  90 3392-3400
  • 53 Frank-Raue K. Das medulläre Schilddrüsenkarzinom: Bedeutung des Mutationsnachweises im RET-Proto-Onkogen, Lokalisationsmethoden bei Tumorpersistenz und prognostischen Faktoren. Johann Ambrosius Barth, Heidelberg, Leipzig 1998
  • 54 Rendl J, Reiners C. Etablierte nuklearmedizinische Verfahren zur Lokalisationsdiagnostik. In: Medulläres Schilddrüsenkarzinom. Herausgegeben von Feldkamp J, Scherbaum WA, Schott M. Walter de Gruyter, Berlin, New York 2002
  • 55 Beheshti M, Poecher S, Heinisch M, Dirisamer A, Langsteger W. Comparison of 18F-FDG PET/CT for preoperative assessment and follow-up in patients with medullary thyroid carcinoma (MTC).  J Nucl Med. 2006;  47 (suppl. 1) 165P ,  abstract 473
  • 56 Brandt-Mainz K, Muller S P, Gorges R, Saller B, Bockisch A. The value of fluorine-18 fluorodeoxyglucose PET in patients with medullary thyroid cancer.  Eur J Nucl Med. 2000;  27 490-496
  • 57 Szakall Jr S, Esik O, Bajzik G, Repa I, Dabasi G, Sinkovics I, Agoston P, Tron L. 18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma.  J Nucl Med. 2002;  43 66-71
  • 58 Musholt T J, Musholt P B, Dehdashti F, Moley J. Evaluation of fluorodeoxyglucose-positron emission tomographic scanning and its association with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma: a clinical and molecular study.  Surgery. 1997;  122 1049-1061
  • 59 Ricci P E, Karis J P, Heiserman J E, Fram E K, Bice A N, Drayer B P. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography?.  AJNR Am J Neuroradiol. 1998;  19 407-413
  • 60 Olivero W C, Dulebohn S C, Lister J R. The use of PET in evaluating patients with primary brain tumours: is it useful?.  J Neurol Neurosurg Psychiatry. 1995;  58 250-252
  • 61 Weckesser M, Langen K J, Rickert C H, Kloska S, Straeter R, Hamacher K, Kurlemann G, Wassmann H, Coenen H H, Schober O. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours.  Eur J Nucl Med Mol Imaging. 2005;  32 422-429
  • 62 Rachinger W, Goetz C, Popperl G, Gildehaus F J, Kreth F W, Holtmannspotter M, Herms J, Koch W, Tatsch K, Tonn J C. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas.  Neurosurgery. 2005;  57 505-511
  • 63 Heiss W D, Wienhard K, Wagner R, Lanfermann H, Thiel A, Herholz K, Pietrzyk U. F-Dopa as an amino acid tracer to detect brain tumors.  J Nucl Med. 1996;  37 1180-1182
  • 64 Pöpperl G. PET (und PET/CT) - Stellenwert in der Diagnostik von primären Hirntumoren.  Der Nuklearmediziner. 2004;  27 246-254
  • 65 Chen W, Delaloye S, Cloughesy T, Mischel P, Bergsneider M, Satyamurthy N, Czernin J, Silverman D H. FDOPA uptake kinetics in human gliomas and the relationship to histopathologic tumor cell proliferation index Ki-67.  J Nucl Med. 2006;  47 79P ,  abstract 222
  • 66 Chen W, Delaloye S, Czernin J, Silverman D H, Pope W, Satayamurthy N, Geist C, Cloughesy T. Predicting response of malignant brain tumors to bevacizumab and irinotecan therapy with FLT and FDOPA PET.  J Nucl Med. 2006;  47 (suppl. 1) 78P-79P ,  abstract 221
  • 67 Becherer A, Karanikas G, Szabo M, Zettinig G, Asenbaum S, Marosi C, Henk C, Wunderbaldinger P, Czech T, Wadsak W, Kletter K. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine.  Eur J Nucl Med Mol Imaging. 2003;  30 1561-1567
  • 68 de Herder W W, Reijs A E, de Swart J, Kaandorp Y, Lamberts S W, Krenning E P, Kwekkeboom D J. Comparison of iodine-123 epidepride and iodine-123 IBZM for dopamine D2 receptor imaging in clinically non-functioning pituitary macroadenomas and macroprolactinomas.  Eur J Nucl Med. 1999;  26 46-50
  • 69 Schmidt M, Jockenhovel F, Theissen P, Dietlein M, Krone W, Schicha H. Assessment of endocrine disorders of the hypothalamic-pituitary axis by nuclear medicine techniques.  Nuklearmedizin. 2002;  41 80-90
  • 70 Lange-Nolde A, Zajic T, Slawik M, Brink I, Reincke M, Moser E, Hoegerle S. Positron Emission Tomography with [18F]FDOPA in the imaging of parathyroid adenoma in patients with primary hyperparathyreoidism: a pilot study.  Nuklearmedizin. 2006;  45 193-196
  • 71 Neumann D R, Esselstyn C B, Maclntyre W J, Go R T, Obuchowski N A, Chen E Q, Licata A A. Comparison of FDG-PET and sestamibi-SPECT in primary hyperparathyroidism.  J Nucl Med. 1996;  37 1809-1815
  • 72 Melon P, Luxen A, Hamoir E, Meurisse M. Fluorine-18-fluorodeoxyglucose positron emission tomography for preoperative parathyroid imaging in primary hyperparathyroidism.  Eur J Nucl Med. 1995;  22 556-558
  • 73 Beggs A D, Hain S F. Localization of parathyroid adenomas using 11C-methionine positron emission tomography.  Nucl Med Comm. 2005;  26 133-136
  • 74 Kettle A G, O'Doherty M J. Parathyroid imaging: how good is it and how should it be done?.  Semin Nucl Med. 2006;  36 206-211
  • 75 Fraker D L. Update on the management of parathyroid tumors.  Curr Opin Oncol. 2000;  12 41-48
  • 76 Papaioannou G, McHugh K. Neuroblastoma in childhood: review and radiological findings.  Cancer Imaging. 2005;  5 116-127
  • 77 Kushner B H, Yeung H W, Larson S M, Kramer K, Cheung N K. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients.  J Clin Oncol. 2001;  19 3397-3405
  • 78 Shulkin B L, Hutchinson R J, Castle V P, Yanik G A, Shapiro B, Sisson J C. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy.  Radiology. 1996;  199 743-750
  • 79 Menni F, de Lonlay P, Sevin C, Touati G, Peigne C, Barbier V, Nihoul-Fekete C, Saudubray J M, Robert J J. Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia.  Pediatrics. 2001;  107 476-479
  • 80 Aynsley-Green A, Hussain K, Hall J, Saudubray J M, Nihoul-Fekete C, De Lonlay-Debeney P, Brunelle F, Otonkoski T, Thornton P, Lindley K J. Practical management of hyperinsulinism in infancy.  Arch Dis Child Fetal Neonatal Ed. 2000;  82 F98-F107
  • 81 Suchi M, Thornton P S, Adzick N S, MacMullen C, Ganguly A, Stanley C A, Ruchelli E D. Congenital hyperinsulinism: intraoperative biopsy interpretation can direct the extent of pancreatectomy.  Am J Surg Pathol. 2004;  28 1326-1335
  • 82 Otonkoski T, Nanto-Salonen K, Seppanen M, Veijola R, Huopio H, Hussain K, Tapanainen P, Eskola O, Parkkola R, Ekstrom K, Guiot Y, Rahier J, Laakso M, Rintala R, Nuutila P, Minn H. Noninvasive diagnosis of focal hyperinsulinism of infancy with [18F]-DOPA positron emission tomography.  Diabetes. 2006;  55 13-18
  • 83 Ribeiro M J, De Lonlay P, Delzescaux T, Boddaert N, Jaubert F, Bourgeois S, Dolle F, Nihoul-Fekete C, Syrota A, Brunelle F. Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA.  J Nucl Med. 2005;  46 560-566
  • 84 Hardy O, Stanley C, Adzick N S, Ruchelli E, Rourke S O, Wintering N, Saffer J R, Zhunag H, Alavi A. Imaging of congenital hyperinsulinism with 18F-L-Fluoro-DOPA PET and correlation with histopathology.  J Nucl Med. 2006;  47 82P ,  abstract 230
  • 85 Mohnike K, Blankenstein O, Christesen H T, De Lonlay J, Hussain K, Koopmans K P, Minn H, Mohnike W, Mutair A, Otonkoski T, Rahier J, Ribeiro M, Schoenle E, Fekete C N. Proposal for a standardized protocol for 18F-DOPA-PET (PET/CT) in congenital hyperinsulinism.  Horm Res. 2006;  66 40-42
  • 86 van Langevelde A, van der Molen H D, Journee-de Korver J G, Paans A M, Pauwels E K, Vaalburg W. Potential radiopharmaceuticals for the detection of ocular melanoma. Part III. A study with 14C and 11C labelled tyrosine and dihydroxyphenylalanine.  Eur J Nucl Med. 1988;  14 382-387
  • 87 Dimitrakopoulou-Strauss A, Strauss L G, Burger C. Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-L-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis.  J Nucl Med. 2001;  42 248-256
  • 88 Jacob T, Grahek D, Younsi N, Kerrou K, Aide N, Montravers F, Balogova S, Colombet C, De Beco V, Talbot J N. Positron emission tomography with [(18)F]FDOPA and [(18)F]FDG in the imaging of small cell lung carcinoma: preliminary results.  Eur J Nucl Med Mol Imaging. 2003;  30 1266-1269
  • 89 Brink I, Schumacher T, Mix M, Ruhland S, Stoelben E, Digel W, Henke M, Ghanem N, Moser E, Nitzsche E U. Impact of [18F]FDG-PET on the primary staging of small-cell lung cancer.  Eur J Nucl Med Mol Imaging. 2004;  31 1614-1620
  • 90 Talbot J N, Kerrou K, Missoum F, Grahe D, Aide N, Lumbroso J, Montravers F. 6-[F-18]fluoro-L-DOPA positron emission tomography in the imaging of Merkel cell carcinoma: preliminary report of three cases with 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography or pentetreotide-(111In) SPECT data.  Mol Imaging Biol. 2005;  7 257-261
  • 91 Wisser H, Knoll E. Katecholamine. In: Lehrbuch der Klinischen Chemie und Pathobiochemie/Hrsg. Greiling H und Gressner AM. Schattauer, Stuttgart, New York 1987; 786

PD Dr. I. Brink

Abteilung Nuklearmedizin · Universitätsklinikum Freiburg

Hugstetterstr. 55

79106 Freiburg

Phone: +49/7 61/2 70 39 99

Fax: +49/7 61/2 70 39 30

Email: ingo.brink@uniklinik-freiburg.de