Synlett 2006(18): 3037-3040  
DOI: 10.1055/s-2006-951522
LETTER
© Georg Thieme Verlag Stuttgart · New York

Structural Factors Governing Stereoselective Heck Reaction for the ­Construction of the Oxindole Portion of TMC-95A

Masayuki Inoue*a,b,c, Tomoaki Takahashia, Hidetomo Furuyamaa, Masahiro Hiramaa
a Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
Fax: +81(22)7956566; e-Mail: inoue@ykbsc.chem.tohoku.ac.jp;
b Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
c PRESTO, Japan Science and Technology Agency, Sendai 980-8578, Japan
Further Information

Publication History

Received 23 March 2006
Publication Date:
25 October 2006 (online)

Abstract

In our total synthesis of the potent proteasome inhibitor TMC-95A, we reported an efficient Z-selective Mizoroki-Heck reaction to produce a 3-alkylideneoxindole structure. In this paper, we investigated in detail the structural factors influencing this remarkable Z-selectivity using various structurally modified versions of the original substrate.

    References and Notes

  • 1 Kohno J. Koguchi Y. Nishio M. Nakao K. Kuroda M. Shimizu R. Ohnuki T. Komatsubara S. J. Org. Chem.  2000,  65:  990 
  • 2a Inoue M. Furuyama H. Sakazaki H. Hirama M. Org. Lett.  2001,  3:  2863 
  • 2b Inoue M. Sakazaki H. Furuyama H. Hirama M. Angew. Chem. Int. Ed.  2003,  42:  2654 
  • Total synthesis of TMC-95A/B from other groups. See:
  • 3a Lin S. Danishefsky SJ. Angew. Chem. Int. Ed.  2002,  41:  512 
  • 3b Lin S. Yang Z.-Q. Kwok BHB. Koldobskiy M. Crews CM. Danishefsky SJ. J. Am. Chem. Soc.  2004,  126:  6347 
  • 3c Albrecht BK. Williams RM. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  11949 
  • For reviews on intramolecular Mizoroki-Heck reactions, see:
  • 4a Heck RF. Org. React.  1982,  27:  345 
  • 4b de Meijere A. Meyer FE. Angew. Chem., Int. Ed. Engl.  1994,  33:  2379 
  • 4c Link JT. Overman LE. Intramolecular Heck Reactions in Natural Product Chemistry, In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998.  p.231-269  
  • 4d Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 4e Link JT. Org. React.  2002,  60:  157 
  • 4f Dyker G. Synthesis of Heterocycles, In Handbook of Organopalladium Chemistry for Organic Synthesis   Vol. 1:  Negishi E. Wiley and Sons; New York: 2002.  p.1255-1282  
  • 4g Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century   Chap. 3.2:  Wiley and Sons; West Sussex: 2004. 
  • 4h Beller M. Zapf A. Riermeier TH. Palladium-Catalyzed Olefinations of Aryl Halides (Heck Reaction) and Related Transformations, In Transition Metals for Organic Synthesis   2nd ed., Vol. 1:  Beller M. Bolm C. Wiley-VCH; Weinheim: 2004.  p.271-305  
  • 5 Madin A. Overman LE. Tetrahedron Lett.  1992,  33:  4859 
  • Related substrates have been extensively utilized by Overman in the context of selective introduction of quaternary carbon centers. For a review, see:
  • 6a Dounay AB. Overman LE. Chem. Rev.  2003,  103:  2925 
  • For recent examples, see:
  • 6b Huang A. Kodanko JJ. Overman LE. J. Am. Chem. Soc.  2004,  126:  14043 
  • 6c Madin A. O’Donnell CJ. Oh T. Old DW. Overman LE. Sharp MJ. J. Am. Chem. Soc.  2005,  127:  18054 
  • For recent examples, see:
  • 7a Kende AS. Luzzio MJ. Mendoza JS. J. Org. Chem.  1990,  55:  918 
  • 7b Palmisano G. Annunziata R. Papeo G. Sisiti M. Tetrahedron: Asymmetry  1996,  7:  1 
  • 7c Yokoshima S. Tokuyama H. Fukuyama T. Angew. Chem. Int. Ed.  2000,  39:  4073 
  • 7d Onishi T. Sebahar PR. Williams RM. Tetrahedron  2004,  60:  9503 
  • 7e Chen Z. Fan J. Kende AS. J. Org. Chem.  2004,  69:  79 
  • For recent examples, see:
  • 8a Mendel DB. Laird AD. Xin X. Louie SG. Christensen JG. Li G. Schreck RE. Abrams TJ. Ngai TJ. Lee LB. Murray LJ. Carver J. Chan E. Moss KG. Haznedar JO. Sukbuntherng J. Blake RA. Sun L. Tang C. Miller T. Shirazian S. McMahon G. Cherrington JM. Clin. Cancer Res.  2003,  9:  327 
  • 8b Sun L. Liang C. Shirazian S. Zhou Y. Miller T. Cui J. Fukuda JY. Chu J.-Y. Nematalla A. Wang X. Chen H. Sistla A. Luu TC. Tang F. Wei J. Tang C. J. Med. Chem.  2003,  46:  1116 
  • 8c Woodard CL. Li Z. Kathcart AK. Terrell J. Gerena L. Sanchez M.-L. Kyle DE. Bhattacharjee AK. Nichols DA. Ellis W. Prigge ST. Geyer JA. Waters NC. J. Med. Chem.  2003,  46:  3877 
  • 9a Mori M. Ban Y. Tetrahedron Lett.  1979,  13:  1133 
  • 9b Larock RC. Babu S. Tetrahedron Lett.  1987,  28:  5291 
  • 9c Arcadi A. Cacchi S. Marinelli F. Pace P. Synlett  1993,  743 
  • 9d Fielding MR. Grigg R. Urch CJ. Chem. Commun.  2000,  2239 
  • 9e Brunton SA. Jones K. J. Chem. Soc., Perkin Trans. 1  2000,  763 
  • 9f Yanada R. Obika S. Oyama M. Takemoto Y. Org. Lett.  2004,  6:  2825 
  • 9g D’Souza DM. Rominger F. Müller TJJ. Angew. Chem. Int. Ed.  2005,  44:  153 
  • 9h Cheung WS. Patch RJ. Player MR. J. Org. Chem.  2005,  70:  3741 
  • 12 Fitton P. Rick EA. J. Organomet. Chem.  1971,  28:  287 
  • 13 Abelman MM. Oh T. Overman LE. J. Org. Chem.  1987,  52:  4130 
10

All the substrates described in this paper were prepared by a route similar to that published in ref. 2a.

11

Typical Procedure (Entry 1, Table 1).
To a solution of (E)-2 (1.43 g, 2.36 mmol) and Et3N
(3.30 mL, 23.6 mmol) in THF (23.6 mL) was added Pd2(dba)3·CHCl3 (495 mg, 0.473 mmol) and NMP (23.6 mL). After being stirred for 5 min, the reaction mixture was diluted with EtOAc and quenched with H2O. The organic phase was separated and washed with H2O, sat. NaHCO3, brine, dried over Na2SO4, and concentrated. The residue was purified with flash column chromatography to give (Z)-3 (1.04 g, 1.98 mmol, E/Z = 1:25, 84%). [α]D 25 -6.81 (c 1.65, MeOH). FT-IR (film): ν = 1731, 1574, 1470, 1371 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.33 (9 H, s, Boc), 1.49 (3 H, s, acetonide), 1.55 (3 H, s, acetonide), 1.64 (9 H, s, Boc), 3.81 (1 H, d, J = 9.5 Hz, H25), 4.32 (2/3 H, dd, J = 9.5, 8.5 Hz, H25), 4.38 (1/3 H, J = 9.5, 8.5 Hz, H25), 5.73 (1/3 H, dd, J = 9.5, 8.5 Hz, H8), 5.85 (2/3 H, dd, J = 9.5, 8.5 Hz, H8), 6.79 (2/3 H, d, J = 9.5 Hz, H7), 6.90 (1/3 H, d, J = 9.5 Hz, H7), 7.00 (1 H, dd, J = 8.0, 8.0 Hz, H3), 7.39 (1 H, d, J = 8.0 Hz, H4), 7.45 (1/3 H, d, J = 8.0 Hz, H2), 7.48 (2/3 H, d, J = 8.0 Hz, H2). 13C NMR (125 MHz, CDCl3): δ = 23.8, 24.8, 26.9, 27.7, 27.9, 28.5, 54.3, 56.0, 68.5, 69.0, 80.5, 80.9, 85.6, 94.2, 94.8, 106.8, 118.6, 119.1, 124.9, 125.2, 125.3, 125.8, 134.1, 134.3, 137.8, 144.1, 145.9, 148.2. 152.0, 165.5. HRMS (ESI): m/z calcd for C24H31BrN2NaO6 [M + Na]+: 545.1258; found: 545.1263.

14

Addition of the palladium hydride to (Z)-3 would generate either C6-Pd or C7-Pd species. Isomerization of the olefin geometry is possible through syn-elimination of C6-Pd/C7-H or C7-Pd/C8-H and following reconjugation of the olefin.