Semin Plast Surg 2006; 20(3): 149-156
DOI: 10.1055/s-2006-949116
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Molecular Basis of Vascular Birthmarks

Ben Pocock1 , Laurence M. Boon1 , 2 , Miikka Vikkula2
  • 1Center for Vascular Anomalies, Cliniques universitaires St. Luc, Brussels, Belgium
  • 2Human Molecular Genetics, Christian de Duve Institute, Université catholique de Louvain, Brussels, Belgium
Further Information

Publication History

Publication Date:
18 September 2006 (online)

ABSTRACT

Vascular anomalies affect up to 10% of newborns, largely because of the high incidence of hemangioma of infancy. Vascular anomalies also frequently occur in adults; there is high prevalence of capillary malformations (0.3%). These cutaneous stains often cause psychosocial problems related to their visibility. Venous malformations occur in the skin and in internal organs and may cause destruction. Primary lymphedema causes lifelong morbidity, and arteriovenous malformations, in addition to causing distortion, obstruction, and pain, can be life endangering. The pathophysiology of these anomalies has stayed largely unknown, but genetic studies have revealed clues to their etiology. Genetic defects cause hereditary types of venous malformation, cutaneous and mucosal (VMCM); glomuvenous malformation (GVM); primary congenital lymphedema (Milroy disease); lymphedema-distichiasis syndrome; hypotrichosis-lymphedema-telangiectasia (HLT) syndrome; hereditary hemorrhagic telangiectasia (HHT); cerebral cavernous malformation (CCM); and a newly recognized disorder, capillary malformation-arteriovenous malformation (CM-AVM). These seminal discoveries have not only permitted a more precise clinical classification and diagnosis (a prerequisite for corrective measures for prevention, treatment, and follow-up) but also pointed the way to the identification of factors that play an important role in vasculogenesis or angiogenesis, or both.

REFERENCES

  • 1 Pratt A G. Birthmarks in infants.  AMA Arch Derm Syphilol. 1953;  67 302-305
  • 2 Mulliken J B, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics.  Plast Reconstr Surg. 1982;  69 412-422
  • 3 Mulliken J B, Young A E. Vascular Birthmarks: Hemangiomas and Malformations. Philadelphia, PA; WB Saunders 1988
  • 4 Enjolras O, Riche M C, Merland J J, Escande J P. Management of alarming hemangiomas in infancy: a review of 25 cases.  Pediatrics. 1990;  85 491-498
  • 5 Takahashi K, Mulliken J B, Kozakewich H P, Rogers R A, Folkman J, Ezekowitz R A. Cellular markers that distinguish the phases of hemangioma during infancy and childhood.  J Clin Invest. 1994;  93 2357-2364
  • 6 Esterly N B. Hemangiomas in infants and children: clinical observations.  Pediatr Dermatol. 1992;  9 353-355
  • 7 Trop I, Dubois J, Guibaud L et al.. Soft-tissue venous malformations in pediatric and young adult patients: diagnosis with Doppler US.  Radiology. 1999;  212 841-845
  • 8 Burrows P E, Laor T, Paltiel H, Robertson R L. Diagnostic imaging in the evaluation of vascular birthmarks.  Dermatol Clin. 1998;  16 455-488
  • 9 Vikkula M, Boon L M, Mulliken J B. Molecular genetics of vascular malformations.  Matrix Biol. 2001;  20 327-335
  • 10 Eerola I, Boon L M, Watanabe S, Grynberg H, Mulliken J B, Vikkula M. Locus for susceptibility for familial capillary malformations (“port-wine stain”) maps to 5q.  Eur J Hum Genet. 2002;  10 375-380
  • 11 Eerola I, Boon L M, Mulliken J B et al.. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations.  Am J Hum Genet. 2003;  73 1240-1249
  • 12 Vikkula M, Boon L M, Carraway K LI et al.. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2.  Cell. 1996;  87 1181-1190
  • 13 Boon L M, Mulliken J B, Vikkula M et al.. Assignment of a locus for dominantly inherited venous malformations to chromosome 9p.  Hum Mol Genet. 1994;  3 1583-1587
  • 14 Gallione C J, Pasyk K A, Boon L M et al.. A gene for familial venous malformations maps to chromosome 9p in a second large kindred.  J Med Genet. 1995;  32 197-199
  • 15 Calvert J T, Riney T J, Kontos C D et al.. Allelic and locus heterogeneity in inherited venous malformations.  Hum Mol Genet. 1999;  8 1279-1289
  • 16 Boon L M, Mulliken J B, Vikkula M. RASA1: variable phenotype with capillary and arteriovenous malformations.  Curr Opin Genet Dev. 2005;  15 265-269
  • 17 Korpelainen E I, Kärkkäinen M, Gunji Y, Vikkula M, Alitalo K. Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant TIE-2 causing venous malformations signals a distinct STAT activation response.  Oncogene. 1999;  18 1-8
  • 18 Karttunen L, Boon L, Vikkula M, Olsen B R. TIE-2 signalling and venous malformations. In: Rubanyi GM Angiogenesis in Health and Disease: Basic Mechanisms and Clinical Applications. New York, NY; Marcel Dekker 1999: 89-96
  • 19 Witzenbichler B, Maisonpierre P C, Jones P, Yancopoulos G D, Isner J M. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2.  J Biol Chem. 1998;  273 18514-18521
  • 20 Papapetropoulos A, Garcia-Cardena G, Dengler T J, Maisonpierre P C, Yancopoulos G D, Sessa W C. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors.  Lab Invest. 1999;  79 213-223
  • 21 Takakura N, Huang X L, Naruse T et al.. Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis.  Immunity. 1998;  9 677-686
  • 22 Suri C, Jones P F, Patan S et al.. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis.  Cell. 1996;  87 1171-1180
  • 23 Boon L M, Mulliken J B, Enjolras O, Vikkula M. Glomuvenous malformation (glomangioma) and venous malformation: distinct clinicopathologic and genetic entities.  Arch Dermatol. 2004;  140 971-976
  • 24 Mallory S B, Enjolras O, Boon L M et al.. Congenital plaque-type glomuvenous malformations presenting in childhood.  Arch Dermatol. 2006;  142 892-896
  • 25 Goodman T F, Abele D C. Multiple glomus tumors. A clinical and electron microscopic study.  Arch Dermatol. 1971;  103 11-23
  • 26 Dervan P A, Tobbia I N, Casey M, O'Loughlin J, O'Brien M. Glomus tumours: an immunohistochemical profile of 11 cases.  Histopathology. 1989;  14 483-491
  • 27 McIntyre B A, Brouillard P, Aerts V, Gutierrez-Roelens I, Vikkula M. Glomulin is predominantly expressed in vascular smooth muscle cells in the embryonic and adult mouse.  Gene Expr Patterns. 2004;  4 351-358
  • 28 Rudolph R. Familial multiple glomangiomas.  Ann Plast Surg. 1993;  30 183-185
  • 29 Boon L M, Brouillard P, Irrthum A et al.. A gene for inherited cutaneous venous anomalies (“glomangiomas”) localizes to chromosome 1p21-22.  Am J Hum Genet. 1999;  65 125-133
  • 30 Irrthum A, Brouillard P, Enjolras O et al.. Linkage disequilibrium narrows locus for venous malformation with glomus cells (VMGLOM) to a single 1.48 Mbp YAC.  Eur J Hum Genet. 2001;  9 34-38
  • 31 Brouillard P, Boon L M, Mulliken J B et al.. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations (“glomangiomas”).  Am J Hum Genet. 2002;  70 866-874
  • 32 Brouillard P, Ghassibe M, Penington A et al.. Four common glomulin mutations cause two thirds of glomuvenous malformations (“familial glomangiomas”): evidence for a founder effect.  J Med Genet. 2005;  42 e13
  • 33 Brouillard P, Olsen B R, Vikkula M. High-resolution physical and transcript map of the locus for venous malformations with glomus cells (VMGLOM) on chromosome 1p21-p22.  Genomics. 2000;  67 96-101
  • 34 Wang T, Li B Y, Danielson P D et al.. The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors.  Cell. 1996;  86 435-444
  • 35 Hirschi K K, Rohovsky S A, D'Amore P A. PDGF, TGF-β and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate.  J Cell Biol. 1998;  141 1-10
  • 36 Ferrell R E, Levinson K L, Esman J H et al.. Hereditary lymphedema: evidence for linkage and genetic heterogeneity.  Hum Mol Genet. 1998;  7 2073-2078
  • 37 Evans A L, Brice G, Sotirova V et al.. Mapping of primary congenital lymphedema to the 5q35.3 region.  Am J Hum Genet. 1999;  64 547-555
  • 38 Irrthum A, Karkkainen M J, Devriendt K, Alitalo K, Vikkula M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase.  Am J Hum Genet. 2000;  67 295-301
  • 39 Witte M H, Erickson R, Bernas M et al.. Phenotypic and genotypic heterogeneity in familial Milroy lymphedema.  Lymphology. 1998;  31 145-155
  • 40 Mangion J, Rahman N, Mansour S et al.. A gene for lymphedema-distichiasis maps to 16q24.3  Am J Hum Genet. 1999;  65 427-432
  • 41 Karkkainen M J, Ferrell R E, Lawrence E C et al.. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema.  Nat Genet. 2000;  25 153-159
  • 42 Kaipainen A, Korhonen J, Mustonen T et al.. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development.  Proc Natl Acad Sci USA. 1995;  92 3566-3570
  • 43 Dumont D J, Jussila L, Taipale J et al.. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3.  Science. 1998;  282 946-949
  • 44 Dale R F. The inheritance of primary lymphoedema.  J Med Genet. 1985;  22 274-278
  • 45 Temple I K, Collin J R. Distichiasis-lymphoedema syndrome: a family report.  Clin Dysmorphol. 1994;  3 139-142
  • 46 Fang J, Dagenais S L, Erickson R P et al.. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome.  Am J Hum Genet. 2000;  67 1382-1388
  • 47 Finegold D N, Kimak M A, Lawrence E C et al.. Truncating mutations in FOXC2 cause multiple lymphedema syndromes.  Hum Mol Genet. 2001;  10 1185-1189
  • 48 Bell R, Brice G, Child A H et al.. Analysis of lymphoedema-distichiasis families for FOXC2 mutations reveals small insertions and deletions throughout the gene.  Hum Genet. 2001;  108 546-551
  • 49 Irrthum A, Devriendt K, Chitayat D et al.. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia.  Am J Hum Genet. 2003;  72 1470-1478
  • 50 Jacobs A H, Walton R G. The incidence of birthmarks in the neonate.  Pediatrics. 1976;  58 218-222
  • 51 Berg J N, Quaba A A, Georgantopoulou A, Porteous M E. A family with hereditary port wine stain.  J Med Genet. 2000;  37 E12
  • 52 Redondo P, Vazquez-Doval F J. Familial multiple nevi flammei.  J Am Acad Dermatol. 1996;  35 769-770
  • 53 Ashinoff R, Geronemus R G. Capillary hemangiomas and treatment with the flash lamp-pumped pulsed dye laser.  Arch Dermatol. 1991;  127 202-205
  • 54 Dover J S, Geronemus R, Stern R S, O'Hare D, Arndt K A. Dye laser treatment of port-wine stains: comparison of the continuous-wave dye laser with a robotized scanning device and the pulsed dye laser.  J Am Acad Dermatol. 1995;  32 237-240
  • 55 van der Horst C M, Koster P H, de Borgie C A, Bossuyt P M, van Gemert M J. Effect of the timing of treatment of port-wine stains with the flash-lamp-pumped pulsed-dye laser.  N Engl J Med. 1998;  338 1028-1033
  • 56 Troilius A, Wrangsjo B, Ljunggren B. Potential psychological benefits from early treatment of port-wine stains in children.  Br J Dermatol. 1998;  139 59-65
  • 57 Namba Y, Mae O, Ao M. The treatment of port wine stains with a dye laser: a study of 644 patients.  Scand J Plast Reconstr Surg Hand Surg. 2001;  35 197-202
  • 58 Michel S, Landthaler M, Hohenleutner U. Recurrence of port-wine stains after treatment with the flashlamp-pumped pulsed dye laser.  Br J Dermatol. 2000;  143 1230-1234
  • 59 Barsky S H, Rosen S, Geer D E, Noe J M. The nature and evolution of port wine stains: a computer-assisted study.  J Invest Dermatol. 1980;  74 154-157
  • 60 Smoller B R, Rosen S. Port-wine stains. A disease of altered neural modulation of blood vessels?.  Arch Dermatol. 1986;  122 177-179
  • 61 Couteulx S L, Brezin A P, Fontaine B, Tournier-Lasserve E, Labauge P. A novel KRIT1/CCM1 truncating mutation in a patient with cerebral and retinal cavernous angiomas.  Arch Ophthalmol. 2002;  120 217-218
  • 62 Rigamonti D, Johnson P C, Spetzler R F, Hadley M N, Drayer B P. Cavernous malformations and capillary telangiectasia: a spectrum within a single pathological entity.  Neurosurgery. 1991;  28 60-64
  • 63 Gunel M, Awad I A, Anson J, Lifton R P. Mapping a gene causing cerebral cavernous malformation to 7q11.2-q21.  Proc Natl Acad Sci USA. 1995;  92 6620-6624
  • 64 Craig H D, Gunel M, Cepeda O et al.. Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15-13 and 3q25.2-27.  Hum Mol Genet. 1998;  7 1851-1858
  • 65 Laberge-le Couteulx S, Jung H H, Labauge P et al.. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas.  Nat Genet. 1999;  23 189-193
  • 66 Revencu N, Vikkula M. Cerebral cavernous malformation: new molecular and clinical insights.  J Med Genet. , Published online March 29, 2006
  • 67 Eerola I, Plate K H, Spiegel R, Boon L M, Mulliken J B, Vikkula M. KRIT1 is mutated in hyperkeratotic cutaneous capillary-venous malformation associated with cerebral capillary malformation.  Hum Mol Genet. 2000;  9 1351-1355
  • 68 Labauge P, Enjolras O, Bonerandi J J et al.. An association between autosomal dominant cerebral cavernomas and a distinctive hyperkeratotic cutaneous vascular malformation in 4 families.  Ann Neurol. 1999;  45 250-254
  • 69 McDonald M T, Papenberg K A, Ghosh S et al.. A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q33-34.  Nat Genet. 1994;  6 197-204
  • 70 Shovlin C L, Hughes J M, Tuddenham E G et al.. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3.  Nat Genet. 1994;  6 205-209
  • 71 Vincent P, Plauchu H, Hazan J, Faure S, Weissenbach J, Godet J. A third locus for hereditary haemorrhagic telangiectasia maps to chromosome 12q.  Hum Mol Genet. 1995;  4 945-949
  • 72 Johnson D W, Berg J N, Gallione C J et al.. A second locus for hereditary hemorrhagic telangiectasia maps to chromosome 12.  Genome Res. 1995;  5 21-28
  • 73 McAllister K A, Grogg K M, Johnson D W et al.. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1.  Nat Genet. 1994;  8 345-351
  • 74 Johnson D W, Berg J N, Baldwin M A et al.. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2.  Nat Genet. 1996;  13 189-195
  • 75 Pece N, Vera S, Cymerman U, White Jr R I, Wrana J L, Letarte M. Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative.  J Clin Invest. 1997;  100 2568-2579
  • 76 Savitsky K, Bar-Shira A, Gilad S et al.. A single ataxia telangiectasia gene with a product similar to PI-3 kinase.  Science. 1995;  268 1749-1753
  • 77 Amir J, Metzker A, Krikler R, Reisner S H. Strawberry hemangioma in preterm infants.  Pediatr Dermatol. 1986;  3 331-332
  • 78 Cheung D SM, Warman M L, Mulliken J B. Hemangioma in twins.  Ann Plast Surg. 1997;  38 269-274
  • 79 Hidano A, Nakajima S. Earliest features of the strawberry mark in the newborn.  Br J Dermatol. 1972;  87 138-144
  • 80 Cannistra C, Standoli L. Viral implication in immature angiomas. Etiopathogenic hypothesis and immunohistopathologic study of eleven cases.  Pathol Biol (Paris). 1994;  42 150-155
  • 81 Dupin N, Enjolras O, Wassef M et al.. Absence of HHV-8 virus detected in immature hemangiomas in infants.  Ann Dermatol Venereol. 1998;  125 98-99
  • 82 Sasaki G H, Pang C Y, Wittliff J L. Pathogenesis and treatment of infant skin strawberry hemangiomas: clinical and in vitro studies of hormonal effects.  Plast Reconstr Surg. 1984;  73 359-370
  • 83 Pack G T, Miller T R. Hemangiomas: classification, diagnosis and treatment.  Angiology. 1950;  1 405-426
  • 84 Boye E, Yu Y, Paranya G, Mulliken J B, Olsen B R, Bischoff J. Clonality and altered behavior of endothelial cells from hemangiomas.  J Clin Invest. 2001;  107 745-752
  • 85 Bischoff J. Monoclonal expansion of endothelial cells in hemangioma: an intrinsic defect with extrinsic consequences?.  Trends Cardiovasc Med. 2002;  12 220-224
  • 86 North P E, Waner M, Mizeracki A, Mihm Jr M C. GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas.  Hum Pathol. 2000;  31 11-22
  • 87 North P E, Waner M, Mizeracki A et al.. A unique microvascular phenotype shared by juvenile hemangiomas and human placenta.  Arch Dermatol. 2001;  137 559-570
  • 88 Carmeliet P, Dor Y, Herbert J M et al.. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis.  Nature. 1998;  394 485-490
  • 89 Maxwell P H, Wiesener M S, Chang G W et al.. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.  Nature. 1999;  399 271-275
  • 90 Semenza G L, Jiang B H, Leung S W et al.. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1.  J Biol Chem. 1996;  271 32529-32537

 Professor
Miikka VikkulaM.D. Ph.D. 

Maitre de Recherces du F.N.R.S., Human Molecular Genetics (GEHU), Christian de Duve Institute & Université catholique de Louvain, Avenue Hippocrate 74(+ 5)

UCL 75.39, B-1200 Brussels, Belgium

    >