Synlett 2006(4): 0533-0538  
DOI: 10.1055/s-2006-926252
LETTER
© Georg Thieme Verlag Stuttgart · New York

Design and Synthesis of a New Generation of ‘NH’-Ni(II) Complexes of Glycine Schiff Bases and their Unprecedented C-H vs. N-H Chemoselectivity in Alkyl Halide Alkylations and Michael Addition Reactions

Trevor K. Ellis, Vadim A. Soloshonok*
Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
Fax: +1(405)3256111; e-Mail: vadim@ou.edu;
Further Information

Publication History

Received 26 October 2005
Publication Date:
20 February 2006 (online)

Abstract

Within this manuscript the synthesis of a new generation of Ni(II) complexes that contain a secondary rather than a tertiary amino group, as well as the unusual chemoselectivity, was demonstrated in alkyl halide alkylations and Michael addition reactions. The complete C-H chemoselectivity observed in these reactions suggests that coordination of nitrogen to a metal has a significant synthetic potential as protecting a group without the need of introducing a transient N-C substituent. These new complexes have also proven highly synthetically useful nucleophilic glycine equivalents for the simple and highly diastereoselective synthesis of β-sub­stituted pyroglutamic acids via their reactions with chiral Michael acceptors.

    References and Notes

  • For general reviews on asymmetric synthesis of α-amino acids via homologation of chiral equivalents of nucleophilic glycine, see:
  • 1a Williams RM. In Synthesis of Optically Active α-Amino Acids   Baldwin JE. Organic Chemistry Series, Pergamon Press; Oxford: 1989. 
  • 1b Duthaler RO. Tetrahedron  1994,  50:  1539 
  • 1c Cativiela C. Diaz-De-Villegas MD. Tetrahedron: Asymmetry  1998,  9:  3517 
  • 1d Cativiela C. Diaz-De-Villegas MD. Tetrahedron: Asymmetry  2000,  11:  645 
  • For selected recent reviews, see:
  • 1e Calmes M. Daunis J. Amino Acids  1999,  16:  215 
  • 1f Bouifraden S. Drouot C. El Hadrami M. Guenoun F. Lecointe L. Mai N. Paris M. Pothion C. Sadoune M. Sauvagnat B. Amblard M. Aubagnac JL. Calmes M. Chevallet P. Daunis J. Enjalbal C. Fehrentz JA. Lamaty F. Lavergne JP. Lazaro R. Rolland V. Roumestant ML. Viallefont P. Vidal Y. Martinez J. Amino Acids  1999,  16:  345 
  • 1g Sutherland A. Willis CL. Nat. Prod. Rep.  2000,  17:  621 
  • 1h Beller M. Eckert M. Angew. Chem. Int. Ed.  2000,  39:  1010 
  • 1i Kawabata T. Fuji K. Synth. Org. Chem. Jpn.  2000,  58:  1095 
  • 1j Kazmaier U. Maier S. Zumpe FL. Synlett  2000,  1523 
  • 1k Yao SL. Saaby S. Hazell RG. Jorgensen KA. Chem. Eur. J.  2000,  6:  2435 
  • 1l Abellan T. Chinchilla R. Galindo N. Guillena G. Najera C. Sansano JM. Eur. J. Org. Chem.  2000,  2689 
  • 1m Rutjes FPJT. Wolf LB. Schoemaker HE. J. Chem. Soc., Perkin Trans. 1  2000,  4197 
  • 1n Shioiri T. Hamada Y. Synlett  2001,  184 
  • 1o Soloshonok VA. Curr. Org. Chem.  2002,  6:  341 
  • 2 For the recent collection of leading papers on asymmetric synthesis of amino acids, see: ‘Asymmetric Synthesis of Novel Sterically Constrained Amino Acids’, Tetrahedron Symposia-in-Print; # 88; Guest Editors: Hruby, V. J. and Soloshonok, V. A.; Tetrahedron  2001,  57 (30): 
  • ‘Operationally Convenient Conditions’ is a significant issue in the development of contemporary organic synthetic methodology.
  • 3a Taylor SM. Yamada T. Ueki H. Soloshonok VA. Tetrahedron Lett.  2004,  45:  9159 
  • 3b Soloshonok VA. Berbasov DO. J. Fluorine Chem.  2004,  125:  1757 
  • 4a Soloshonok VA. Ueki H. Ellis TK. Tetrahedron Lett.  2005,  46:  941 
  • 4b Soloshonok VA. Ueki H. Ellis TK. Yamada T. Ohfune Y. Tetrahedron Lett.  2005,  46:  1107 
  • For recent general reviews on combinatorial chemistry, see:
  • 5a Young SS. Ge N. Curr. Opin. Drug Discovery Dev.  2004,  7:  318 
  • 5b Maltais R. Tremblay MR. Ciobanu LC. Poirier D. J. Comb. Chem.  2004,  6:  443 
  • 5c Burke MD. Schreiber SL. Angew. Chem. Int. Ed.  2004,  43:  46 
  • 5d Maclean D. Martin EJ. J. Comb. Chem.  2004,  6:  1 
  • 6a Trost BM. Acc. Chem. Res.  2002,  35:  695 
  • 6b Trost BM. Angew. Chem., Int. Ed. Engl.  1995,  34:  259 
  • 6c Trost BM. Science  1991,  254:  1471 
  • 7 Hornback JM. Organic Chemistry   Brooks/Cole Publishing Company; New York: 1998.  p.361-364  
  • 8 For recent applications of Hünig’s base for the efficient synthesis of tertiary amines, see: Moore JL. Taylor SM. Soloshonok VA. ARKIVOC  2005,  (vi):  287 
  • 9a Although Professor Hegedus does mention that the complexation of a secondary amino group to Ni(II) was not sufficient to create the desired chemoselectivity of O-H over N-H acylation, he does introduce the idea of using it as a form of protection. See: Hegedus LS. Greenberg MM. Wendling JJ. Bullock JP. J. Org. Chem.  2003,  68:  4179 
  • 9b Patinec V. Gardinier I. Yaouanc JJ. Clement J.-C. Handel H. des Abbayes H. Inorg. Chim. Acta  1996,  244:  105 
  • For previous papers from this groups related to the synthesis of stereochemically defined C-substituted glutamic acids and their derivatives, see:
  • 10a Soloshonok VA. Avilov DV. Kukhar’ VP. Meervelt LV. Mischenko N. Tetrahedron Lett.  1997,  38:  4903 
  • 10b Soloshonok VA. Cai C. Hruby VJ. Meervelt LV. Mischenko N. Tetrahedron  1999,  55:  12031 
  • 10c Soloshonok VA. Cai C. Hruby VJ. Meervelt LV. Tetrahedron  1999,  55:  12045 
  • 10d Soloshonok VA. Cai C. Hruby VJ. Tetrahedron: Asymmetry  1999,  10:  4265 
  • 10e Soloshonok VA. Cai C. Hruby VJ. Tetrahedron Lett.  2000,  41:  135 
  • 10f Soloshonok VA. Cai C. Hruby VJ. Angew. Chem. Int. Ed.  2000,  39:  2172 
  • 10g Soloshonok VA. Cai C. Hruby VJ. Org. Lett.  2000,  2:  747 
  • 10h Soloshonok VA. Cai C. Hruby VJ. Meervelt LV. Yamazaki T. J. Org. Chem.  2000,  20:  6688 
  • 10i Soloshonok VA. Cai C. Hruby VJ. Tetrahedron Lett.  2000,  41:  9645 
  • 10j Cai C. Soloshonok VA. Hruby VJ. J. Org Chem.  2001,  66:  1339 
  • 10k Soloshonok VA. Ueki H. Jiang C. Cai C. Hruby VJ. Helv. Chim. Acta  2002,  85:  3616 
  • 10l Soloshonok VA. Ueki H. Tiwari R. Cai C. Hruby VJ. J. Org. Chem.  2004,  69:  4984 
  • 10m Cai C. Yamada T. Tiwari R. Hruby VJ. Soloshonok VA. Tetrahedron Lett.  2004,  45:  6855 
  • 10n Soloshonok VA. Cai C. Yamada T. Ueki H. Ohfune Y. Hruby VJ. J. Am. Chem. Soc.  2005,  127:  15296 
  • For the general procedure for the disassembly of the Ni(II) Schiff base complexes see:
  • 12a Soloshonok VA. Ueki H. Ellis TK. Yamada T. Ohfune Y. Tetrahedron Lett.  2005,  46:  1107 
  • 12b Ellis TK. Ueki H. Soloshonok VA. Tetrahedron Lett.  2005,  46:  941 
11

Synthesis of the Ni(II) Complexes of Glycine Schiff Bases with N -(2-Benzoylphenyl)-2-(alkylamino)acetamides 9a-c; General Procedure. A solution of KOH (10 equiv) in MeOH (7 mL/1 g of KOH) was added to a suspension of N-(2-benzoylphenyl)-2-(alkylamino)acetamides 8a-c (1 equiv), glycine (5 equiv), nickel nitrate hexahydrate (2 equiv) in MeOH (10 mL/1 g of 8a-c) at 60-70 °C. Upon complete consumption of the N-(2-benzoylphenyl)-2-(alkylamino)acetamides 8a-c, monitored by TLC, the reaction mixture was poured over slurry of ice and 5% AcOH. After the complete precipitation, product 9a-c was filtered and dried in a low temperature oven (50 °C) overnight. The product was obtained in high chemical yield (99%) and high chemical purity without further purification.
Compound 9a: mp >300 °C (decomp.). 1H NMR (299.95 MHz, CDCl3): δ = 1.95 (1 H, br s), 3.45 (2 H, s), 3.86 (2 H, s), 7.01 (1 H, td, J = 7.65, 0.72 Hz), 7.13-7.29 (3 H, m), 7.30-7.60 (7 H, m), 7.62-7.78 (2 H, m), 8.64 (1 H, dd, J = 8.4, 0.3 Hz), 11.66 (1 H, br s). 13C NMR (75.42 MHz, CDCl3): δ = 52.90, 54.10, 121.68, 122.32, 124.82, 125.55, 125.71, 127.30, 127.40, 128.32, 128.45, 128.48, 130.17, 132.62, 132.82, 133.66, 138.47, 139.12, 139.26, 171.19, 198.32. HRMS: m/z calcd for C22H20N2NaO2: 367.1417; found: 367.1103.
Compound 9b: mp 292.3 °C (decomp.). 1H NMR (299.95 MHz, CDCl3): δ = 1.56 (3 H, d, J = 6.3 Hz), 1.66 (3 H, d, J = 6.3 Hz), 2.76 (1 H, br s), 3.12 (1 H, dq, J = 13.2, 6.3 Hz), 3.29 (1 H, d, J = 17.7 Hz), 3.75 (2 H, s), 3.99 (1 H, dd, J = 17.7, 7.5 Hz), 6.83 (1 H, m), 6.93 (1 H, m), 7.01 (1 H, m), 7.19 (1 H, m), 7.35 (1 H, m), 7.53-7.59 (3 H, m), 8.55 (1 H, d, J = 7.8 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 20.57, 21.74, 51.70, 53.33, 60.60, 121.28, 128.34, 125.69, 125.82, 136.24, 129.45, 129.75, 129.88, 132.66, 133.60, 134.66, 142.62, 173.23, 177.88, 177.91, 178.18. HRMS: m/z calcd for C20H21N3NaNiO3: 432.0828; found: 432.0837.
Compound 9c: mp >300 °C (decomp.). 1H NMR (299.95 MHz, CDCl3): δ = 1.54 (9 H, s), 2.60 (1 H, d, J = 7.8 Hz), 3.41 (1 H, d, J = 17.1 Hz), 3.73 (2 H, d, J = 3.9 Hz), 4.17 (1 H, dd, J = 17.1, 7.5 Hz), 6.84 (1 H, m), 6.93 (1 H, dd, J = 8.1, 1.8 Hz), 6.99 (1 H, m), 7.23 (1 H, m), 7.38 (1 H, m), 7.53-7.60 (3 H, m), 8.37 (1 H, d, J = 7.5 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 28.02, 50.98, 58.25, 60.42, 121.33, 124.24, 125.71, 126.27, 129.41, 129.79, 129.90, 132.72, 133.50, 134.54, 142.38, 171.74, 177.36, 177.72. HRMS: m/z calcd for C21H23N3NaNiO3: 446.0985; found: 446.1015.
The Michael Addition of the Oxazolidinone Derived Amides of Cinnamic Acid and Nucleophilic Glycine Equivalents 9a-c; General Procedure. To a flask containing 9a, 9b, or 9c (0.10 g), 3-[(E)-3-alkyl-acryloyl]oxazolidin-2-one 20a,b (1.05 equiv) and 3 mL of DMF, DBU (15 mol%) was added to the reaction mixture, which was stirred at r.t. and monitored by TLC. After disappearance of starting glycine equivalent by TLC, the reaction mixture was poured into a beaker containing 100 mL ice water. After the ice had melted the corresponding product 21a,b, 22, 23, was filtered from the aqueous solution and dried in an oven to afford the corresponding product in high chemical yields.
Compound 23: mp 146.3 °C. 1H NMR (299.95 MHz, CDCl3): δ = 2.66-2.89 (4 H, m), 3.25-3.42 (3 H, m), 3.85 (1 H, dd, J = 16.2, 6.0 Hz), 4.18 (1 H, dd, J = 8.7, 3.9 Hz), 4.43 (1 H, d, J = 4.2 Hz), 4.60 (1 H, t, J = 8.7 Hz), 5.18 (1 H, dd, J = 8.7, 3.9 Hz), 6.71-6.84 (3 H, m), 6.97-7.01 (2 H, m), 7.05 (1 H, d, J = 6.9 Hz), 7.11-7.14 (2 H, m), 7.23-7.47 (10 H, m), 7.56-7.59 (2 H, m), 7.67-7.73 (3 H, m), 8.38 (1 H, d, J = 8.7 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 36.44, 45.18, 53.08, 54.69, 57.47, 69.75, 73.38, 121.04, 123.85, 125.72, 125.86, 126.88, 126.96, 127.24, 127.97, 128.28, 128.37, 128.74, 128.89, 129.14, 129.62, 129.79, 130.72, 132.57, 133.53, 133.61, 133.98, 138.72, 132.84, 139.24, 142.93, 169.89, 171.02, 175.94, 176.60, 177.47. HRMS: m/z calcd for C42H36N4NaNiO6: 773.1880; found: 773.1813.
Compound 22: mp 183.1 °C. 1H NMR (299.95 MHz, CDCl3): δ = 1.29 (3 H, d, J = 6.6 Hz), 1.37 (3 H, d, J = 6.6 Hz), 2.67 (1 H, s), 2.74 (1 H, h, J = 6.6 Hz), 2.86 (1 H, d, J = 16.5 Hz), 3.18-3.30 (2 H, m), 3.56 (1 H, dd, J = 18.6, 8.7 Hz), 3.72 (1 H, dd, J = 18.6, 8.7 Hz), 4.20 (1 H, dd, J = 8.7, 3.9 Hz), 4.49 (1 H, d, J = 4.5 Hz), 4.63 (1 H, t, J = 9.0 Hz), 5.18 (1 H, dd, J = 8.7, 3.9Hz), 6.74 (1 H, d, J = 2.7 Hz), 6.99-7.05 (3 H, m), 7.24 (1 h, d, J = 2.7 Hz), 7.27 (1 H, d, J = 2.7 Hz), 7.28-7.33 (5 H, m), 7.37 (1 H, t, J = 7.2 Hz), 7.47-7.52 (3 H, m), 7.56-7.62 (3 H, m), 8.40 (1 H, d, J = 9.3 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 20.22, 21.44, 29.30, 44.95, 52.75, 53.78, 57.47, 69.77, 73.29, 124.67, 125.66, 125.91, 127.27, 127.95, 128.31, 128.42, 128.49, 128.75, 128.88, 129.33, 129.42, 130.32, 130.80, 132.57, 132.70, 132.86, 138.82, 139.21, 141.57, 153.35, 169.80, 169.98, 176.94, 177.08. HRMS: m/z calcd for C38H36N4NaNiO6: 759.1501; found: 759.1584.
Compound 21b: mp 183.1 °C. 1H NMR (299.95 MHz, CDCl3): δ = 1.28 (9 H, s), 2.67 (1 H, s), 2.97 (1 H, d, J = 16.8 Hz), 3.20-3.37 (2 H, m), 3.51 (1 H, dd, J = 17.7, 8.4 Hz), 3.74 (1 H, dd, J = 17.7, 8.4 Hz), 4.17 (1 H, dd, J = 9, 3.9 Hz), 4.46 (1 H, d, J = 4.5 Hz), 4.61 (1 H, t, J = 8.7 Hz), 5.18 (1 H, dd, J = 8.7, 3.6 Hz), 6.79 (1 H, m), 6.98-7.03 (3 H, m), 7.26-7.38 (7 H, m), 7.43-7.49 (3 H, m), 7.54-7.63 (4 H, m), 8.23 (1 H, d, J = 8.4 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 27.78, 36.55, 44.93, 50.81, 57.45, 59.70, 69.72, 72.53, 120.89, 123.10, 125.81, 127.34, 127.63, 128.24, 128.32, 128.82, 128.87, 129.03, 129.18, 129.97, 130.62, 132.88, 133.62, 133.94, 138.83, 139.11, 142.79, 153.29, 169.99, 170.83, 176.36, 177.20. HRMS: m/z calcd for C39H39N4NiO6: 739.2037; found: 739.2078.
Compound 21a: mp 153.7 °C. 1H NMR (299.95 MHz, CDCl3): δ = 1.43 (9 H, s), 1.91 (3 H, s), 3.04 (1 H, dd, J = 18.3, 7.2 Hz), 3.24 (1 H, dd, J = 18.3, 7.2 Hz), 3.39 (1 H, d, J = 17.1 Hz), 4.16 (1 H, d, J = 4.5 Hz), 4.22 (1 H, dd, J = 9.0, 3.6 Hz), 4.39 (1 H, q, J = 17.1, 7.2 Hz), 4.61 (1 H, t, J = 8.7 Hz), 5.28 (1 H, dd, J = 8.7, 3.3 Hz), 6.78 (2 H, d, J = 4.8 Hz), 6.94 (1 H, d, J = 7.8 Hz), 7.25 (2 H, m), 7.30-7.47 (7 H, m), 7.53 (1 H, t, J = 7.8 Hz), 8.37 (1 H, d, J = 8.4 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 16.85, 27.97, 33.75, 38.94, 51.51, 57.50, 57.89, 69.93, 72.32, 120.98, 123.04, 126.09, 127.33, 127.81, 128.59, 128.83, 129.03, 129.09, 129.85, 132.88, 133.68, 134.00, 139.23, 142.73, 153.55, 170.46, 171.24, 177.12, 177.78. HRMS: m/z calcd for C34H36N4NiO6: 677.1880; found: 677.1918.