Synthesis 2006(2): 325-331  
DOI: 10.1055/s-2005-924768
PAPER
© Georg Thieme Verlag Stuttgart · New York

Direct Monoalkylation of Alkyl Phosphinates to Access H-Phosphinic Acid Esters

Isabelle Abrunhosa-Thomas, Patrice Ribière, Alicia C. Adcock, Jean-Luc Montchamp*
Department of Chemistry, Box 298860, Texas Christian University, Fort Worth, TX 76129, USA
Fax: +1(817)2575851; e-Mail: j.montchamp@tcu.edu;
Further Information

Publication History

Received 1 July 2005
Publication Date:
21 December 2005 (online)

Abstract

Simple alkyl phosphinates prepared by the silicate esterification method can be alkylated under Barbier-like conditions with butyl lithium at -78 °C followed by warming to room temperature. The method is limited to the more reactive electrophile such as allylic bromides and alkyl iodides. With these electrophiles good yields of H-phosphinic acid esters are generally obtained in a straightforward manner.

    References

  • 1 Gallagher MJ. Ranasinghe MG. Jenkins ID. Phosphorus, Sulfur Silicon Relat. Elem.  1996,  115:  255 
  • 2a Gallagher MJ. Sussman J. Phosphorus  1975,  5:  91 
  • 2b Maier L. Helv. Chim. Acta  1973,  56:  489 
  • 2c Wroblewski AE. Verkade JG. J. Am. Chem. Soc.  1996,  118:  10168 
  • 2d

    See also reference 6.

  • 3a Fookes CJR. Gallagher MJ. J. Chem. Soc., Perkin Trans. 1  1975,  1876 
  • 3b Fookes CJR. Gallagher MJ. Honneger H. J. Chem. Soc., Chem. Commun.  1978,  324 
  • 4 Nifant’ev EE. Levitan LP. J. Gen. Chem. USSR (Engl. Transl.)  1965,  35:  762 
  • 5a Dingwall JG. Ehrenfreund J. Hall RG. Jack J. Phosphorus Sulfur Relat. Elem.  1987,  30:  571 
  • 5b McCleery PP. Tuck B. J. Chem. Soc., Perkin Trans. 1  1989,  1319 
  • 5c Dingwall JG. Ehrenfreund J. Hall RG. Tetrahedron  1989,  45:  3787 
  • 5d Baylis EK. Tetrahedron Lett.  1995,  36:  9385 
  • 5e Baylis EK. Tetrahedron Lett.  1995,  36:  9389 
  • 5f Froestl W. Mickel SJ. Hall RG. von Sprecher G. Diel PJ. Strub D. Baumann PA. Brugger F. Gentsch C. Jaekel J. Olpe H.-R. Rihs G. Vassout A. Waldmeier PC. Bittiger H. J. Med. Chem.  1995,  38:  3297 
  • 5g Bennett SNL. Hall RG. J. Chem. Soc., Perkin Trans. 1  1995,  1145 
  • 6 Deprèle S. Montchamp J.-L. J. Organomet. Chem.  2002,  643-644:  154 
  • 7 For example: Ribière P. Bravo-Altamirano K. Antczak M. Hawkins JD. Montchamp J.-L. J. Org. Chem.  2005,  70:  4064 
  • 9a Deprèle S. Montchamp J.-L. J. Org. Chem.  2001,  66:  6745 
  • 9b Deprèle S. Montchamp J.-L. J. Am. Chem. Soc.  2002,  124:  9386 
  • 10 Bravo-Altamirano K. Huang Z. Montchamp J.-L. Tetrahedron  2005,  61:  6315 
  • See for example:
  • 11a Nifant’ev EE. Magdeeva RK. Shchepet’eva NP. J. Gen. Chem. USSR (Engl. Transl.)  1980,  50:  1416 
  • 11b Karanewsky DS. Badia MC. Cushman DW. DeForrest JM. Dejneka T. Loots MJ. Perri MG. Petrillo EW. Powell JR. J. Med. Chem.  1988,  31:  204 
  • 11c Kabachnik MI. Tsvetkov EN. Chang C.-Y. Dokl. Chem. (Engl. Transl.)  1959,  125:  309 
  • See for example:
  • 12a [CH3P(O)(OEt)H, 81%]: Kehler J. Ebert B. Dahl O. Krogsgaard-Larsen P. Tetrahedron  1999,  55:  771 
  • 12b [CH3P(O)(OEt)H, 88%]: Renard P.-Y. Vayron P. Taran F. Miokowski C. Tetrahedron Lett.  1999,  40:  281 
  • 12c [CH3P(O)(OAr)H, 32-75%]: Barabanov VI. Abramov VS. J. Gen. Chem. USSR (Engl. Transl.)  1965,  35:  2215 
  • 12d [CH3P(O)(OAlk)H, 60-75%]: Gruzdev VG. Karavanov KV. Ivin SV. J. Gen. Chem. USSR (Engl. Transl.)  1968,  38:  1499 
  • 12e [CH3P(O)(OBu)H, 68%]: Gladshtein BM. Shitov LN. J. Gen. Chem. USSR (Engl. Transl.)  1969,  39:  1913 
  • 12f Murata Y. Woodward RM. Miledi R. Overman LE. Bioorg. Med. Chem. Lett.  1996,  6:  2073 
  • 13 Kehler J. Ebert B. Dahl O. Krogsgaard-Larsen P. J. Chem. Soc., Perkin Trans. 1  1998,  3241 
  • 15 Boyd EA. Regan AC. James K. Tetrahedron Lett.  1994,  35:  4223 
  • 16a Bujard M. Gouverneur V. Mioskowski C. J. Org. Chem.  1999,  64:  2119 
  • 16b Briot A. Bujard M. Gouverneur V. Nolan SP. Mioskowski C. Org. Lett.  2000,  2:  1517 
  • 17a Patel DV. Gordon EM. Schmidt RJ. Weller HN. Young MG. Zahler R. Barbacid M. Carboni JM. Gullo-Brown JL. Hunihan L. Ricca C. Robinson S. Seizinger BR. Tuomari AV. Manne V. J. Med. Chem.  1996,  38:  435 
  • 17b Valentijn ARPM. van den Berg O. van der Marel GA. Cohen LH. van Boom JH. Recl. Trav. Chim. Pays-Bas  1994,  113:  563 
  • For the conversion of RP(O)(OR′)H into RP(O)(OR′)Cl and esterification, see for example:
  • 18a Bartlett PA. Giangiordano MA. J. Org. Chem.  1996,  61:  3433 
  • 18b Mucha A. Kafarski P. Plenat F. Cristau H.-J. Tetrahedron  1994,  50:  12743 
  • Based on this NMR data, it is not possible to unambiguously distinguish between the anion and the proposed hydrogen-bonded or tight ion-pair structures [for example for phosphites, (RO)3P and (RO)2PO- appear in the same range of chemical shift (δ = 130-150 ppm in 31P NMR), though there too ion-pairs are possible]:
  • 19a Galkin VI. Khabibullina AB. Smirnov VN. Cherkasov RA. Pudovik AN. Dokl. Chem. (Engl. Transl.)  1987,  292:  21 
  • 19b Moedritzer K. J. Inorg. Nucl. Chem.  1961,  22:  19 
  • However, it is not likely that DBU is sufficiently basic to deprotonate the alkyl phosphinate. Related P(III) compounds have been characterized, for example:
  • 19c (MeO)2PH [δ = 171 (J P-H = 203 Hz)]: Centofanti LF. Inorg. Chem.  1973,  12:  1131 
  • 19d (i-BuO)2PH [δ = 163 (J P-H = 200 Hz)]: Lutsenko IF. Proskurnina MV. Borisenko AA. Dokl. Chem. (Engl. Transl.)  1970,  193:  553 
  • 19e (NeoO)2PH [δ = 162 (J P-H = 198 Hz)]: Stec W. Uznanski B. Houalla D. Wolf R. C. R. Acad. Sci. Ser. C  1975,  281:  727 
  • 19f (EtO)P(OTMS)H [δ = 154 (J P-H = 184 Hz)], (TMSO)2PH [δ = 140 (J P-H = 176 Hz)]: Livantsov MV. Prishchenko AA. Lutsenko IF. J. Gen. Chem. USSR (Engl. Transl.)  1986,  56:  1976 
  • 19g ROP(OR′)H has been proposed as a likely intermediate in the transesterification of alkyl phosphinates but could not be detected: Gallagher MJ. Honneger H. J. Chem. Soc., Chem. Commun.  1978,  54 
  • 20 Review: Montchamp J.-L. J. Organomet. Chem.  2005,  690:  2388 
  • 21a Montchamp J.-L. Dumond YR. J. Am. Chem. Soc.  2001,  123:  510 
  • 21b

    Anilinium hypophosphite is now also commercially available from Aldrich.

  • 22 Froestl W. Mickel SJ. von Sprecher G. Diel PJ. Hall RG. Maier L. Strub D. Melillo V. Baumann PA. Bernasconi R. Gentsch C. Hauser K. Jaekel J. Karlsson G. Klebs K. Maitre L. Marescaux C. Pozza MF. Schmutz M. Steinmann MW. van Riezen H. Vassout A. Mondadori C. Olpe H.-R. Waldmeier PC. Bittiger H. J. Med. Chem.  1995,  38:  3313 
  • 23a Yamagishi T. Kusano T. Yokomatsu T. Shibuya S. Synlett  2002,  1471 
  • 23b Yamagishi T. Kusano T. Kaboudin B. Yokomatsu T. Sakuma C. Shibuya S. Tetrahedron  2003,  59:  767 
  • 24 Petnehazy I. Jaszay ZM. Szabo A. Everaert K. Synth. Commun.  2003,  33:  1665 
  • 25 Kabachnik MI. Chang J.-Y. Tsvetkov EN. J. Gen. Chem. USSR (Engl. Transl.)  1962,  32:  3351 
8

The purification of H-phosphinate esters is often complicated by the very polar nature of these compounds, and their relative ease of hydrolysis. Benzyl alkyl-H-phosphinate esters are more labile than other alkyl esters.

14

We thank Jakob Heid, Klemens Kaupmann, and Wolfgang Froestl (Novartis Pharma) for conducting the GTPgammaS binding assay.