Synlett 2005(16): 2498-2500  
DOI: 10.1055/s-2005-872689
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Novel Synthesis of Aryl α-Imino Esters from Aryl Diazoacetate

Haoxi Huanga,b, Yuanhua Wanga, Zhiyong Chena, Wen H. Hu*a
a Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan Province and Union Laboratory of Asymmetric Synthesis, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China
Fax: +86(28)85229250; e-Mail: huwh@cioc.ac.cn;
b Graduate School of the Chinese Academy of Sciences, Beijing, P. R. of China
Further Information

Publication History

Received 22 July 2005
Publication Date:
21 September 2005 (online)

Abstract

Aryl α-imino esters were synthesized from the reaction of aryl diazoacetate with arylamine in the presence of diethyl azodicarboxylate (DEAD) catalyzed by dirhodium acetate. The α-imino esters were formed through fragmentation of corresponding aminals.

    References

  • 1a Weinreb SM. Top. Curr. Chem.  1997,  190:  131 
  • 1b Borzilleri RM. Weinreb SM. Synthesis  1995,  347 
  • 1c Mikami K. Yajima T. Kaneko M. Amino Acids  1998,  14:  311 
  • 1d Mikami K. Kaneko M. Yajima TS. Tetrahedron Lett.  1993,  34:  4841 
  • 2a Yao S. Fang X. Jørgensen KA. Chem. Commun.  1998,  2547 
  • 2b Drury WJIII. Ferraris D. Cox C. Young B. Lectka T. J. Am. Chem. Soc.  1998,  120:  11006 
  • 3a Yao S. Johannsen M. Hazell RG. Jørgensen KA. Angew. Chem. Int. Ed.  1998,  37:  3121 ; Angew. Chem. 1998, 110, 3318
  • 3b Jørgensen KA. Angew. Chem. Int. Ed.  2000,  39:  3558 ; Angew. Chem. 2000, 112, 3702
  • 3c Yao S. Saaby S. Hazell RG. Jørgensen KA. Chem.-Eur. J.  2000,  2435 
  • 4a Yamamoto Y. Nishii S. Maruyama K. Komatsu T. Ito W. J. Am. Chem. Soc.  1986,  108:  7778 
  • 4b Fang X. Johannson M. Yao S. Gathergood N. Hazell R. Jørgensen KA. J. Org. Chem.  1999,  64:  4844 
  • 4c Ferraris D. Young B. Dudding T. Lectka T. J. Am. Chem. Soc.  1998,  120:  4548 
  • 4d Ferraris D. Young B. Cox C. Dudding T. Drury WJ. Lev R. Taggi AE. Lectka T. J. Am. Chem. Soc.  2002,  124:  67 
  • 5a Juhl K. Gathergood N. Jørgensen KA. Angew. Chem. Int. Ed.  2001,  40:  2995 ; Angew. Chem. 2001, 113, 3083
  • 5b Marigo M. Kjaersgaard A. Juhl K. Gathergood N. Jørgensen KA. Chem.-Eur. J.  2003,  9:  2359 
  • 5c Bernardi L. Gothelf AS. Hazell RG. Jorgensen KA. J. Org. Chem.  2003,  68:  2583 
  • 5d Kobayashi S. Matsubara R. Nakamura Y. Kitagawa H. Sugiura M. J. Am. Chem. Soc.  2003,  125:  2507 
  • 6a Saaby S. Fang X. Gathergood N. Jørgensen KA. Angew. Chem. Int. Ed.  2000,  39:  4114 ; Angew. Chem. 2000, 112, 4280
  • 6b Hao J. Taktak S. Aikawa K. Yusa Y. Hatano M. Mikami K. Synlett  2001,  1443 
  • 7a Juhl K. Hazell R. Jørgensen KA. J. Chem. Soc., Perkin Trans. 1  1999,  2293 
  • 7b Aggarwal VK. Alonso E. Ferrara M. Spey SE. J. Org. Chem.  2002,  67:  2335 
  • 7c Aggarwal VK. Ferrara M. Org. Lett.  2000,  2:  4107 
  • 8a Wack H. Drury WJ. Taggi AE. Ferraris D. Lectka T. Org. Lett.  1999,  1:  1985 
  • 8b Taggi AE. Hafez AM. Wack H. Young B. Drury WJ. Lectka T. J. Am. Chem. Soc.  2000,  122:  7831 
  • 8c France S. Wack H. Hafez AM. Taggi AE. Witsil DR. Lectka T. Org. Lett.  2002,  4:  1603 
  • 8d Akiyama T. Daidouji K. Fubhibe K. Org. Lett.  2003,  5:  3691 
  • 9a Taggi AE. Hafez AM. Wack H. Young B. Drury WJ. Lectka T. J. Am. Chem. Soc.  2000,  122:  7831 
  • 9b Taggi AE. Hafez AM. Wack H. Young B. Ferraris D. Lectka T. J. Am. Chem. Soc.  2002,  124:  6626 
  • 10a Aldea R. Alper H. J. Organomet. Chem.  2000,  594:  454 
  • 10b Iwasaki F. Onomura O. Mishima K. Kanematsu T. Maki T. Matsumura Y. Tetrahedron Lett.  2001,  42:  2525 
  • 10c Abe H. Amii H. Uneyama K. Org. Lett.  2001,  3:  313 
  • 11a Saaby S. Nakama K. Lie MA. Hazell RG. Jørgensen KA. Chem.-Eur. J.  2003,  6145 
  • 11b Stilz HU. Jablonka B. Just M. Knolle J. Paulus EF. Zoller G. J. Med. Chem.  1996,  39:  2118 
  • 12a Hickmott PW. Tetrahedron  1982,  38:  1975 
  • 12b Boeykens M. De Kimpe N. Tehrani KA. J. Org. Chem.  1994,  59:  6973 
  • 12c Taguch K. Westheimer FH. J. Org. Chem.  1971,  36:  1570 
  • Samples for the preparation of α-ketoesters, see:
  • 13a Tatlock JH. J. Org. Chem.  1995,  60:  6221 
  • 13b Hon YS. Lin WC. Tetrahedron Lett.  1995,  36:  7693 
  • 13c Babudti F. Fiandanese V. Marchese G. Punzi A. Tetrahedron  1996,  52:  13513 
  • 13d Grison C. Coutrot F. Coutrot P. Tetrahedron  2001,  57:  6215 
  • 13e Takahashi T. Okano T. Harada T. Imamura K. Yamada H. Synlett  1994,  121 
  • 14a Paulissen R. Hayez E. Hubert A. Teyssie P. Tetrahedron Lett.  1974,  607 
  • 14b Aller E. Buck RT. Drysdale MJ. Ferris L. Haigh D. Moody CJ. Pearson ND. Sanghera JB. J. Chem. Soc., Perkin Trans. 1  1996,  2879 
  • 15a Crystal data for 3c: C15H12N2O4, MW = 284.27, space group P21/n, a = 11.0730 (10) Å, b = 7.6470 (10) Å, c = 16.643 (2) Å, V = 1388.7 (3) Å3, Z = 4, ρcalcd = 1.360 Mg/m3, F(000) = 592, λ = 0.71073 Å, T = 290 (2)K, µ(Mo-Kα) = 0.101 mm-1. Data for the structure were collected on a Siemens P-4X four-circle diffractometer. Intensity measurements were performed on a crystal (dimensions 0.62 × 0.40 × 0.40 mm) in the range 4.12 < 2θ < 50.10°. Of the 2740 measured reflections, 2591were independent (R int = 0.2941). The structure was solved by direct methods (SHELXS-97) and refined by full-matrix least squares on F 2. The final refinements converged at R1 = 0.0360 for I > 2σ(I), wR2 = 0.0796 for all data. The final difference Fourier synthesis gave a min/max residual electron density of 0.134 and -0.115eÅ-3
  • 15b CCDC-238733 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: +44 (1223)336033; or deposit@ ccdc.cam.ac.uk]
  • 16a Wang YH. Zhu YX. Chen ZY. Mi A. Hu W. Doyle MP. Org. Lett.  2003,  5:  3923 
  • 16b Huang HX. Wang YH. Chen ZY. Hu W. Adv. Synth. Catal.  2005,  347:  531 
  • 17 Typical Procedure. To a refluxing CH2Cl2 (8 mL) solution of Rh2 (OAc)4 (2.1 mg, 1 mol%), p-nitroaniline 2c (66.6 mg, 0.48 mmol) and DEAD (83.5 µL, 0.53 mmol) under argon atmosphere was added phenyldiazoacetate 1a (85 mg, 0.48 mmol) in 4 mL of CH2Cl2 over 1 h via a syringe pump. After completing the addition, the reaction mixture was cooled to r.t. and the solvent was removed. The crude product was purified by flash chromatography on silica gel by using 1% EtOAc-light petroleum as eluent to give a yellow solid 3c, yield 60%. Single crystal 3c was grown in hexane and EtOAc solution: mp 93.1-94.1 °C. 1H NMR (300 MHz, CDCl3): δ = 8.24 (d, J = 8.9 Hz, 2 H), 7.88 (m, 2 H), 7.48-7.61 (m, 3 H), 7.04 (d, J = 8.9 Hz, 2 H), 3.67 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 174.4, 164.3, 161.2, 156.0, 144.9, 132.8, 129.1, 128.5, 124.9, 120.0, 52.3. MS (EI, 70 eV): m/z (rel. intensity) = 284 (12) [M+], 225 (84), 179 (41), 167 (8), 76 (100), 59 (40). Anal. Calcd for C15H12N2O4: C, 63.38; H, 4.25; N, 9.85. Found: C, 63.12; H, 4.29; N, 9.85