Plant Biol (Stuttg) 2005; 7(3): 220-227
DOI: 10.1055/s-2005-865645
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Molecular Tools to Study Physcomitrella patens

W. Frank1 , E. L. Decker1 , R. Reski1
  • 1Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
Weitere Informationen

Publikationsverlauf

Received: December 20, 2004

Accepted: April 12, 2005

Publikationsdatum:
23. Mai 2005 (online)

Abstract

The moss Physcomitrella patens has become a suitable model plant system for the analysis of diverse aspects of modern plant biology. The research strategies have been influenced by the implementation of state-of-the-art cell culture and molecular biology techniques. The forthcoming completion of the Physcomitrella genome sequencing project will generate many open questions, the examination of which will rely on a diverse set of molecular tools. Within this article, we intend to introduce the essential cell culture and molecular biology techniques which have been adopted in recent years to make Physcomitrella amenable to a wide range of genetic analyses. Many research groups have made valuable contributions to improve the methodology for the study of Physcomitrella. We would like to apologise to all colleagues whose important contributions could not be cited within this manuscript.

References

  • 1 Ashton N. W., Champagne C. E. M., Weiler T., Verkoczy L. K.. The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements.  New Phytologist. (2000);  146 391-402
  • 2 Ashton N. W., Cove D. J.. The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants in the moss Physcomitrella patens. .  Molecular and General Genetics. (1977);  154 87-95
  • 3 Bezanilla M., Pan A., Quatrano R. S.. RNA interference in the moss Physcomitrella patens. .  Plant Physiology. (2003);  133 470-474
  • 4 Bouche N., Bouchez D.. Arabidopsis gene knockout: phenotypes wanted.  Current Opinion in Plant Biology. (2001);  4 111-117
  • 5 Brucker G., Mittmann F., Hartmann E., Lamparter T.. Targeted site-directed mutagenesis of a heme oxygenase locus by gene replacement in the moss Ceratodon purpureus. .  Planta. (2004);  DOI: 10.1007/s00425-004-1411-6
  • 6 Cho S. H., Chung Y. S., Cho S. K., Rim Y. W., Shin J. S.. Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens. .  Molecules and Cells. (1999);  9 14-19
  • 7 Cove D. J., Knight C. D.. The moss Physcomitrella patens, a model system with potential for the study of plant reproduction.  Plant Cell. (1993);  5 1483-1488
  • 8 Cove D. J., Knight C. D., Lamparter T. L.. Mosses as model sytems.  Trends in Plant Science. (1997);  2 99-105
  • 9 Decker E. L., Reski R.. The moss bioreactor.  Current Opinion in Plant Biology. (2004);  7 166-170
  • 10 Egener T., Granado J., Guitton M. C., Hohe A., Holtorf H., Lucht J. M., Rensing S. A., Schlink K., Schulte J., Schween G., Zimmermann S., Duwenig E., Rak B., Reski R.. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library.  BMC Plant Biology. (2002);  2 6
  • 11 Engel P. P.. The induction of biochemical and morphological mutants in the moss Physcomitrella patens. .  American Journal of Botany. (1968);  55 438-446
  • 12 Girke T., Schmidt H., Zahringer U., Reski R., Heinz E.. Identification of a novel delta 6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. .  Plant Journal. (1998);  15 39-48
  • 13 Girod P. A., Fu H., Zrӱd J. P., Vierstra R. D.. Multiubiquitin chain binding subunit MCB1 (RPN10) of the 26S proteasome is essential for developmental progression in Physcomitrella patens. .  Plant Cell. (1999);  11 1457-1472
  • 14 Grimsley N. H., Ashton N. W., Cove D. J.. The production of somatic hybrids by protoplast fusion in the moss Physcomitrella patens. .  Molecular and General Genetics. (1977);  154 97-100
  • 15 Heintz D., Wurtz V., High A. A., Van Dorsselaer A., Reski R., Sarnighausen E.. An efficient protocol for the identification of protein phosphorylation in a seedless plant, sensitive enough to detect members of signalling cascades.  Electrophoresis. (2004);  25 1149-1159
  • 16 Hiwatashi Y., Nishiyama T., Fujita T., Hasebe M.. Establishment of gene-trap and enhancer-trap systems in the moss Physcomitrella patens. .  Plant Journal. (2001);  28 105-116
  • 17 Hohe A., Decker E. L., Gorr G., Schween G., Reski R.. Tight control of growth and cell differentiation in photoautotrophically growing moss Physcomitrella patens bioreactor cultures.  Plant Cell Reports. (2002 a);  20 1135-1140
  • 18 Hohe A., Egener T., Lucht J. M., Holtorf H., Reinhard C., Schween G., Reski R.. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. .  Current Genetics. (2004);  44 339-347
  • 19 Hohe A., Rensing S. A., Mildner M., Lang D., Reski R.. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. .  Plant Biology. (2002 b);  4 595-602
  • 20 Hohe A., Reski R.. Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass protoplast production.  Plant Science. (2002);  163 69-74
  • 21 Horstmann V., Huether C. M., Jost W., Reski R., Decker E. L.. Quantitative promoter analysis in Physcomitrella patens: a set of plant vectors activating gene expression within three orders of magnitude.  BMC Biotechnology. (2004);  4 13
  • 22 Imaizumi T., Kadota A., Hasebe M., Wada M.. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. .  Plant Cell. (2002);  14 373-386
  • 23 Jenkins G. I., Cove D. J.. Light requirement for the regeneration of protoplasts of the moss Physcomitrella patens. .  Planta. (1983);  157 39-45
  • 24 Jost W., Link S., Horstmann V., Decker E. L., Reski R., Gorr G.. Isolation and characterisation of three moss-derived beta-tubulin promoters suitable for recombinant expression.  Current Genetics. (2005);  47 111-120
  • 25 Kammerer W., Cove D. J.. Genetic analysis of the effects of re-transformation of transgenic lines of the moss Physcomitrella patens. .  Molecular and General Genetics. (1996);  250 380-382
  • 26 Kasahara M., Kagawa T., Sato Y., Kiyosue T., Wada M.. Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. .  Plant Physiology. (2004);  135 1388-1397
  • 27 Koprivova A., Meyer A. J., Schween G., Herschbach C., Reski R., Kopriva S.. Functional knockout of the adenosine 5′-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation.  Journal of Biological Chemistry. (2002);  277 32195-32201
  • 28 Koprivova A., Stemmer C., Altmann F., Hoffmann A., Kopriva S., Gorr G., Reski R., Decker E. L.. Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans.  Plant Biotechnology Journal. (2004);  2 517-523
  • 29 Lorenz S., Tintelnot S., Reski R., Decker E. L.. Cyclin D-knockout uncouples developmental progression from sugar availability.  Plant Molecular Biology. (2003);  53 227-236
  • 30 Lucumi A., Fleck P., Posten C.. Scale down of photobioreactors for moss cell suspension cultures. Proceedings of the 1st International Congress on Bioreactor Technology in Cell, Tissue Culture and Biomedical Applications, Tampere, Finland. (2003): 175-187
  • 31 Mittmann F., Brucker G., Zeidler M., Repp A., Abts T., Hartmann E., Hughes J.. Targeted knockout in Physcomitrella reveals direct actions of phytochrome in the cytoplasm.  Proceedings of the National Academy of Sciences of the USA. (2004);  101 13939-13944
  • 32 Nishiyama T., Fujita T., Shin I. T., Seki M., Nishide H., Uchiyama I., Kamiya A., Carninci P., Hayashizaki Y., Shinozaki K., Kohara Y., Hasebe M.. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution.  Proceedings of the National Academy of Sciences of the USA. (2003);  100 8007-8012
  • 33 Nishiyama T., Hiwatashi Y., Sakakibara I., Kato M., Hasebe M.. Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis.  DNA Research. (2000);  7 9-17
  • 34 Olsson T., Thelander M., Ronne H.. A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. .  Journal of Biological Chemistry. (2003);  278 44439-44447
  • 35 Rensing S. A., Rombauts S., Van de Peer Y., Reski R.. Moss transcriptome and beyond.  Trends in Plant Science. (2002);  7 535-538
  • 36 Repp A., Mikami K., Mittmann F., Hartmann E.. Phosphoinositide-specific phospholipase C is involved in cytokinin and gravity responses in the moss Physcomitrella patens. .  Plant Journal. (2004);  40 250-259
  • 37 Reski R., Abel W. O.. Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine.  Planta. (1985);  165 354-358
  • 38 Reutter K., Reski R.. Production of a heterologous protein in bioreactor cultures of fully differentiated moss plants.  Plant Tissue Culture and Biotechnology. (1996);  2 142-147
  • 39 Rother S., Hadeler B., Orsini J. M., Abel W. O., Reski R.. Fate of a mutant machrochloroplast in somatic hybrids.  Journal of Plant Physiology. (1994);  143 72-77
  • 40 Sakakibara K., Nishiyama T., Sumikawa N., Kofuji R., Murata T., Hasebe M.. Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens. .  Development. (2003);  130 4835-4846
  • 41 Sarnighausen E., Wurtz V., Heintz D., Van Dorsselaer A., Reski R.. Mapping of the Physcomitrella patens proteome.  Phytochemistry. (2004);  65 1589-1607
  • 42 Sawahel W., Onde S., Knight C. D., Cove D. J.. Transfer of foreign DNA into Physcomitrella protonemal tissue by using the gene gun.  Plant Molecular Biology Reporter. (1992);  10 315-316
  • 43 Schaefer D., Zrӱd J. P., Knight C. D., Cove D. J.. Stable transformation of the moss Physcomitrella patens. .  Molecular and General Genetics. (1991);  226 418-424
  • 44 Schaefer D. G., Zrӱd J. P.. Efficient gene targeting in the moss Physcomitrella patens. .  Plant Journal. (1997);  11 1195-1206
  • 45 Schlink K., Reski R.. Preparing high-quality DNA from moss Physcomitrella patens. .  Plant Molecular Biology Reporter. (2002);  20 423a-423f
  • 46 Schulte J., Reski R.. High throughput cryopreservation of 140 000 Physcomitrella patens mutants.  Plant Biology. (2004);  6 119-127
  • 47 Schween G., Fleig S., Reski R.. High-throughput-PCR screen of 15 000 transgenic Physcomitrella plants.  Plant Molecular Biology Reporter. (2002);  20 43-47
  • 48 Scowcroft W. R., Brettell R. I. S., Ryan S. A., Davies P. A., Pallotta M. A.. Somaclonal variation and genomic flux. Green, C. E., Somers, D. A., Hackett, W. P., and Biesboer, D. D., eds. Plant Tissue and Cell Culture. New York; Alan R. Liss Inc. (1987): 275-286
  • 49 Strepp R., Scholz S., Kruse S., Speth V., Reski R.. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 4368-4373
  • 50 Topfer R., Schell J., Steinbiss H. H.. Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells.  Nucleic Acids Research. (1988);  16 8725

W. Frank

Plant Biotechnology
Faculty of Biology
University of Freiburg

Schänzlestraße 1

79104 Freiburg

Germany

eMail: wolfgang.frank@biologie.uni-freiburg.de

Editor: H. Rennenberg

    >