Semin Vasc Med 2004; 4(4): 377-384
DOI: 10.1055/s-2004-869594
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Statins and the Myocardium

Seema Mital1 , James K. Liao2
  • 1Division of Pediatric Cardiology, Columbia University, College of Physicians and Surgeons, New York, New York
  • 2Vascular Medicine Research, Brigham & Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts
Further Information

Publication History

Publication Date:
29 April 2005 (online)

ABSTRACT

Cardiac hypertrophy and heart failure are leading causes of morbidity and mortality worldwide. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, have been shown to inhibit cardiac hypertrophy and improve symptoms of heart failure by cholesterol-independent mechanisms. Statins block the isoprenylation and function of members of the Rho GTPase family, such as Rac1 and RhoA. Because Rac1 is a requisite component of NADPH oxidase, which is a major source of reactive oxygen species in cardiovascular cells, the ability of statins to inhibit Rac1-mediated oxidative stress contributes importantly to their inhibitory effects on cardiac hypertrophy. Furthermore, inhibition of RhoA by statins leads to the activation of protein kinase B/Akt and upregulation of Type 3 nitric oxide synthase in the endothelium and the heart. This activation and upregulation results in increased angiogenesis and myocardial perfusion, decreased myocardial apoptosis, and improvement in endothelial and cardiac function. Because these effects of statins occur independent of cholesterol lowering, statins may have therapeutic benefits in nonhyperlipidemic patients with cardiac hypertrophy and heart failure.

REFERENCES

  • 1 Laufs U, La Fata V, Plutzky J, Liao J K. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors.  Circulation. 1998;  97 1129-1135
  • 2 Fukumoto Y, Libby P, Rabkin E et al.. Statins alter smooth muscle cell accumulation and collagen content in established atheroma of Watanabe heritable hyperlipidemic rabbits.  Circulation. 2001;  103 993-999
  • 3 Ridker P M, Rifai N, Clearfield M et al.. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events.  N Engl J Med. 2001;  344 1959-1965
  • 4 Bourcier T, Libby P. HMG CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells.  Arterioscler Thromb Vasc Biol. 2000;  20 556-562
  • 5 Endres M, Laufs U, Huang Z et al.. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase.  Proc Natl Acad Sci USA. 1998;  95 8880-8885
  • 6 Lefer A M, Campbell B, Shin Y-K, Scalia R, Hayward R, Lefer D J. Simvastatin preserves the ischemic-reperfused myocardium in normocholesterolemic rat hearts.  Circulation. 1999;  100 178-184
  • 7 Pruefer D, Scalia R, Lefer A M. Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats.  Arterioscler Thromb Vasc Biol. 1999;  19 2894-2900
  • 8 De Caterina R, Libby P, Peng H B et al.. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines.  J Clin Invest. 1995;  96 60-68
  • 9 Hall A. Rho GTPases and the actin cytoskeleton.  Science. 1998;  279 509-514
  • 10 Van Aelst L, D'Souza-Schorey C. Rho GTPases and signaling networks.  Genes Dev. 1997;  11 2295-2322
  • 11 Lee T M, Chou T F, Tsai C H. Association of pravastatin and left ventricular mass in hypercholesterolemic patients: role of 8-iso-prostaglandin f2alpha formation.  J Cardiovasc Pharmacol. 2002;  40 868-874
  • 12 Takemoto M, Node K, Nakagami H et al.. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy.  J Clin Invest. 2001;  108 1429-1437
  • 13 Node K, Fujita M, Kitakaze M, Hori M, Liao J K. Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy.  Circulation. 2003;  108 839-843
  • 14 Yamazaki T, Komuro I, Kudoh S et al.. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy.  Circ Res. 1995;  77 258-265
  • 15 Yamazaki T, Komuro I, Kudoh S et al.. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy.  J Biol Chem. 1996;  271 3221-3228
  • 16 Pracyk J B, Tanaka K, Hegland D D et al.. A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy.  J Clin Invest. 1998;  102 929-937
  • 17 Wang S M, Tsai Y J, Jiang M J, Tseng Y Z. Studies on the function of rho A protein in cardiac myofibrillogenesis.  J Cell Biochem. 1997;  66 43-53
  • 18 Thorburn J, Xu S, Thorburn A. MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells.  EMBO J. 1997;  16 1888-1900
  • 19 Fuller S J, Gillespie-Brown J, Sugden P H. Oncogenic src, raf, and ras stimulate a hypertrophic pattern of gene expression and increase cell size in neonatal rat ventricular myocytes.  J Biol Chem. 1998;  273 18146-18152
  • 20 Hunter J J, Tanaka N, Rockman H A, Ross Jr J, Chien K R. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice.  J Biol Chem. 1995;  270 23173-23178
  • 21 Sah V P, Minamisawa S, Tam S P et al.. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure.  J Clin Invest. 1999;  103 1627-1634
  • 22 Sah V P, Hoshijima M, Chien K R, Brown J H. Rho is required for Galphaq and alpha1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways.  J Biol Chem. 1996;  271 31185-31190
  • 23 Sussman M A, Welch S, Walker A et al.. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1.  J Clin Invest. 2000;  105 875-886
  • 24 Laufs U, Liao J K. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase.  J Biol Chem. 1998;  273 24266-24271
  • 25 Dechend R, Fiebler A, Park J K et al.. Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor.  Circulation. 2001;  104 576-581
  • 26 Bell J P, Mosfer S I, Lang D, Donaldson F, Lewis M J. Vitamin C and quinapril abrogate LVH and endothelial dysfunction in aortic-banded guinea pigs.  Am J Physiol Heart Circ Physiol. 2001;  281 H1704-H1710
  • 27 Date M O, Morita T, Yamashita N et al.. The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model.  J Am Coll Cardiol. 2002;  39 907-912
  • 28 Griendling K K, Minieri C A, Ollerenshaw J D, Alexander R W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.  Circ Res. 1994;  74 1141-1148
  • 29 Zafari A M, Ushio-Fukai M, Akers M et al.. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy.  Hypertension. 1998;  32 488-495
  • 30 Patterson C, Ruef J, Madamanchi N R et al.. Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo.  J Biol Chem. 1999;  274 19814-19822
  • 31 De Keulenaer G W, Alexander R W, Ushio-Fukai M, Ishizaka N, Griendling K K. Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle.  Biochem J. 1998;  329 653-657
  • 32 Marumo T, Schini-Kerth V B, Fisslthaler B, Busse R. Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells.  Circulation. 1997;  96 2361-2367
  • 33 Bendall J K, Cave A C, Heymes C, Gall N, Shah A M. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice.  Circulation. 2002;  105 293-296
  • 34 Smith C J, Sun D, Hoegler C et al.. Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure.  Circ Res. 1996;  78 58-64
  • 35 Treasure C B, Vita J A, Cox D A et al.. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy.  Circulation. 1990;  81 772-779
  • 36 Kuoppala A, Shiota N, Kokkonen J O et al.. Down-regulation of cardioprotective bradykinin type-2 receptors in the left ventricle of patients with end-stage heart failure.  J Am Coll Cardiol. 2002;  40 119-125
  • 37 Olivetti G, Abbi R, Quaini F et al.. Apoptosis in the failing human heart.  N Engl J Med. 1997;  336 1131-1141
  • 38 Lopez Farre A Casado S . Heart failure, redox alterations, and endothelial dysfunction.  Hypertension. 2001;  38 1400-1405
  • 39 Wassmann S, Laufs U, Baumer A T, Muller K et al.. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species.  Hypertension. 2001;  37 1450-1457
  • 40 Hasegawa H, Yamamoto R, Takano H, Mizukami M, Asakawa M, Nagai T, Komuro I. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors prevent the development of cardiac hypertrophy and heart failure in rats.  J Mol Cell Cardiol. 2003;  35 953-960
  • 41 Trochu J N, Mital S, Zhang X, Xu X et al.. Preservation of NO production by statins in the treatment of heart failure.  Cardiovasc Res. 2003;  60 250-258
  • 42 Kureishi Y, Luo Z, Shiojima I et al.. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals.  Nat Med. 2000;  6 1004-1010
  • 43 Abraham S S, Osorio J C, Homma S, Wang J, Thaker H M, Liao J K, Mital S. Simvastatin preserves cardiac function in genetically determined cardiomyopathy.  J Cardiovasc Pharmacol. 2004;  , In press
  • 44 Sugden P. Signalling pathways in cardiac myocyte hypertrophy.  Ann Med. 2001;  33 611-622
  • 45 Hayashida W, Kihara Y, Yasaka A, Inagaki K, Iwanaga Y, Sasayama S. Stage-specific differential activation of mitogen-activated protein kinases in hypertrophied and failing rat hearts.  J Mol Cell Cardiol. 2001;  33 733-744
  • 46 Behr T M, Nerurkar S S, Nelson A H et al.. Hypertensive end-organ damage and premature mortality are p38 mitogen-activated protein kinase-dependent in a rat model of cardiac hypertrophy and dysfunction.  Circulation. 2001;  104 1292-1298
  • 47 Bernier S G, Haddar S, Michel T. Bradykinin-regulated interactions of the mitogen-activated protein kinase pathway with the endothelial nitric-oxide synthase.  J Biol Chem. 2000;  275 30707-30715
  • 48 Kjekshus J, Pedersen T R. Reducing the risk of coronary events: evidence from the Scandinavian Simvastatin Survival Study (4S).  Am J Cardiol. 1995;  76 64C-68C
  • 49 Kjekshus J, Pedersen T R, Olsson A G, Faergeman O. K P. The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease.  J Card Fail. 1997;  3 249-254

James K LiaoM.D. 

Director, Vascular Medicine Research, Brigham & Women's Hospital, Associate Professor of Medicine, Harvard Medical School

65 Landsdowne Street, Room 275

Cambridge, MA 02139