Plant Biol (Stuttg) 2004; 6(6): 715-720
DOI: 10.1055/s-2004-830384
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

The Effect of Fruit Age on Seed Germinability of a Heterocarpic Species, Atriplex sagittata

B. Mandák1 , Š. Holmanová2
  • 1Institute of Botany, Academy of Sciences of the Czech Republic, 252 43 Průhonice, Czech Republic
  • 2Veronské náměstí 338, 109 00 Praha 10, Czech Republic
Further Information

Publication History

Received: December 15, 2003

Accepted: September 10, 2004

Publication Date:
29 November 2004 (online)

Abstract

Atriplex sagittata is an annual heterocarpic plant that produces three different fruit types (termed A, B, and C). To examine the consequence of heterocarpy on germinability patterns over long time periods, we compared seed germinability of different fruit types that had been stored for up to 8 years. While germinability of non-dormant type C fruits in distilled water was high (up to 100 %) in the first 2 years, it rapidly decreased over time. Dormant fruit types A and B showed increased germinability up to 7 years, though loss of germinability was lower for type B than for type A fruits. Eight-year-old fruits of all types had significantly lower germinability than younger fruits, probably due to loss of viability. Heterocarpy, therefore, ensures that emergence rates for seedlings of A. sagittata will be maintained over relatively long periods, even in years of strong disturbance when all adult plants may be destroyed. The experiment further showed that germinability of all fruit types in high concentrations of salt, as compared with water treatment, changed over the course of 8 years. Whilst dormant types (A and B) of A. sagittata show increased germinability with age of the seed in water treatment, they significantly lose germinability over time with salinity treatment. Type C fruit was not influenced by salt in the first year, but germinability rapidly decreased with time. It follows that the species is able to germinate under high salt concentration in the first year, but this advantage gradually disappears.

References

  • 1 Aellen P.. Atriplex. . Hegi, G., ed. Illustrierte Flora von Mitteleuropa. München; Carl Hanser Verlag (1960): 664-693
  • 2 Baar H.. Zur Anatomie und Keimungsphysiologie heteromorpher Samen von Chenopodium album und Atriplex nitens. .  Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien, Mathematisch-Naturwissenschaftliche Klasse. (1912);  72 21-40
  • 3 Beadle N. C. W.. Studies on halophytes. I. The germination of the seeds and establishment of the seedlings of five species of Atriplex in Australia.  Ecology. (1952);  33 49-62
  • 4 Cheplick G. P.. Sibling competition in plants.  Journal of Ecology. (1992);  80 567-575
  • 5 Ellner S. P.. ESS germination strategies in randomly varying environments. I. Logistic type models.  Theoretical Population Biology. (1985);  28 50-79
  • 6 Ellner S. P., Schmida A.. Seed dispersal in relation to habitats in the genus Picris (Compositae) in Mediterranean and arid regions.  Israel Journal of Botany. (1984);  33 25-39
  • 7 Harper J. L.. Population Biology of Plants. London, New York, San Francisco; Academic Press (1977)
  • 8 Harper J. L., Lovell P. H., Moore K. G.. The shapes and sizes of seeds.  Annual Review of Ecology and Systematics. (1970);  1 327-356
  • 9 Hendry G. A. F., Grime J. P.. Methods in Comparative Plant Ecology. A Laboratory Manual. London et al.; Chapman and Hall (1993)
  • 10 Imbert E.. The effects of achene dimorphism on the dispersal in time and space in Crepis sancta (Asteraceae).  Canadian Journal of Botany. (1999);  77 508-513
  • 11 Imbert E.. Ecological consequences and ontogeny of seed heteromorphism.  Perspectives in Plant Ecology, Evolution and Systematics. (2002);  5 13-36
  • 12 Khan M. A., Ungar I. A.. The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd.  American Journal of Botany. (1984);  71 481-489
  • 13 Khan M. A., Ungar I. A.. The role of hormones in regulating the germination of polymorphic seeds and early seedling growth of Atriplex triangularis under saline conditions.  Physiologia Plantarum. (1985);  63 109-113
  • 14 Kirschner J., Tomšovic P.. Atriplex. . Hejný, S. and Slavík, B., eds. Flora of the Czech Republic. Praha; Academia (1990): 266-280 [in Czech]
  • 15 Kopecký K., Lhotská M.. On the spreading of Atriplex sagittata. .  Preslia. (1990);  62 337-349 [in Czech with German summary]
  • 16 Levin S. D., Cohen D., Hastings A.. Dispersal strategies in patchy environment.  Theoretical Population Biology. (1984);  26 165-191
  • 17 Lloyd D. G.. Variation strategies of plants in heterogenous environments.  Biological Journal of the Linnean Society. (1984);  21 357-385
  • 18 Mandák B.. Seed heteromorphism and the life cycle of plants: a literature review.  Preslia. (1997);  69 129-159
  • 19 Mandák B.. Distribution of four Atriplex species with different degrees of invasiveness in the Czech Republic. Child, L. E., Brock, J. H., Brundu, G., Prach, K., Pyšek, P., Wade, P. M., and Williamson, M., eds. Plant Invasions: Ecological Threats and Management Solutions. Leiden; Backhuys Publisher (2003 a): 313-328
  • 20 Mandák B.. Germination requirements of invasive and non-invasive Atriplex species: a comparative study.  Flora. (2003 b);  198 45-54
  • 21 Mandák B., Pyšek P.. History of spread and habitat preferences of Atriplex sagittata (Chenopodiaceae) in the Czech Republic. Starfinger, U., Edwards, K., Kowarik, I., and Williamson, M., eds. Plant Invasions: Ecological Mechanisms and Human Responses. Leiden; Backhuys Publisher (1998): 209-224
  • 22 Mandák B., Pyšek P.. Effects of plant density and nutrient levels on fruit polymorphism in Atriplex sagittata. .  Oecologia. (1999 a);  119 63-72
  • 23 Mandák B., Pyšek P.. How does density-nutrient stress affect allometry and fruit production in the heterocarpic species Atriplex sagittata (Chenopodiaceae)?.  Canadian Journal of Botany. (1999 b);  77 1106-1119
  • 24 Mandák B., Pyšek P.. Fruit dispersal and seed banks in Atriplex sagittata: the role of heterocarpy.  Journal of Ecology. (2001 a);  89 159-165
  • 25 Mandák B., Pyšek P.. The effects of light quality, nitrate concentration and presence of bracteoles on germination of different fruit types in the heterocarpous Atriplex sagittata. .  Journal of Ecology. (2001 b);  89 149-158
  • 26 McArthur E. D., Sanderson  C S.. Distribution, systematics, and evolution of Chenopodiaceae: an overview. Tiedmann, A. R., McArthur, E. D., Stutz, H. C., Stevens, R., and Johnson, K. L., eds. Proceedings - Symposium on the Biology of Atriplex and Related Chenopods , USDA, Forest Service, Intermountain Forest and Range Experiment station, General Technical Report INT-172. (1984): 14-24
  • 27 McEvoy P. B.. Dormancy and dispersal in dimorphic achenes of tansy ragworth, Senecio jacobea L. (Compositae).  Oecologia. (1984);  61 160-168
  • 28 Mohamed-Yasseen Y., Barringer S. A., Splittstoesser W. A., Costanza S.. The role of seed coats in seed viability.  Botanical Review. (1994);  60 426-439
  • 29 Osmond C. B., Björkman O., Anderson D. J.. Physiological Processes in Plant Ecology - Towards a Synthesis with Atriplex. . Berlin, Heidelberg, New York; Springer Verlag (1980)
  • 30 Schoen D. J., Lloyd D. G.. The selection of cleistogamy and heteromorphic diaspores.  Biological Journal of the Linnean Society. (1984);  23 303-322
  • 31 Snedecor G. W., Cochran W. G.. Statistical Methods. Ames; Iowa State University Press (1956)
  • 32 StatSoft (1998) Statistica for Windows. Ed. 2. Tulsa. (1998)
  • 33 Stebbins G. L.. Flowering Plants: Evolution Above the Species Level. Cambridge; Belknap (1974)
  • 34 Takeno K., Yamaguchi H.. Diversity in seed germination behavior in relation to heterocarpy in Salsola komarovii Iljin.  Botanical Magazine. (1991);  104 207-215
  • 35 Tanowitz B. D., Salopek P. F., Mahall B. E.. Differential germination of ray and disc achenes in Hemizonia increscens (Asteraceae).  American Journal of Botany. (1987);  74 303-312
  • 36 Thompson K., Grime J. P.. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats.  Journal of Ecology. (1979);  67 893-921
  • 37 Ungar I. A.. Halophyte seed germination.  Botanical Review. (1978);  44 233-264
  • 38 Ungar I. A.. Population ecology of halophyte seeds.  Botanical Review. (1987);  53 301-334
  • 39 Ungar I. A.. Seed germination and seed-bank ecology in halophytes. Kigel, J. and Galili, G., eds. Seed Development and Germination. New York, Basel, Hong Kong; Marcel Dekker (1995): 599-627
  • 40 Venable D. L.. The evolutionary ecology of seed heteromorphism.  American Naturalist. (1985);  126 577-595
  • 41 Venable D. L., Brown J. S.. The population-dynamic functions of seed dispersal.  Vegetatio. (1993);  107/108 31-55
  • 42 Venable D. L., Lawlor L.. Delayed germination and dispersal in desert annuals: escape in space and time.  Oecologia. (1980);  46 272-282

B. Mandák

Institute of Botany
Academy of Sciences of the Czech Republic

25243 Průhonice

Czech Republic

Email: mandak@ibot.cas.cz

Editor: F. R. Scarano

    >