Seminars in Neurosurgery 2004; 15(1): 5-12
DOI: 10.1055/s-2004-830010
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Anatomy and Physiology of Pain

Mary M. Heinricher1
  • 1Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
07. Juli 2004 (online)

Pain is a sensory experience and distinct from nociception, which refers to the neural mechanisms involved in detecting tissue damage. This article reviews nociceptive mechanisms and how these relate to pain sensation. The emphasis is on recent advances in our understanding of nociceptive mechanisms, including transduction at the peripheral nociceptor terminal, ascending pathways, and the cortical role in pain. Plasticity in nociceptive systems and a new role for descending systems in pain facilitation are also discussed.

REFERENCES

  • 1 Fields H L. Pain. New York; McGraw Hill 1987
  • 2 Wall PD, Melzack R Textbook of Pain. 4th ed. ed. Edinburgh; Churchill Livingstone 1999
  • 3 Julius D, Basbaum A I. Molecular mechanisms of nociception.  Nature. 2001;  413 203-210
  • 4 Richardson J D, Vasko M R. Cellular mechanisms of neurogenic inflammation.  J Pharmacol Exp Ther. 2002;  302 839-845
  • 5 McKemy D D, Neuhausser W M, Julius D. Identification of a cold receptor reveals a general role for trp channels in thermosensation.  Nature. 2002;  416 52-58
  • 6 Kawabata A, Kawao N, Kuroda R, Tanaka A, Itoh H, Nishikawa H. Peripheral par-2 triggers thermal hyperalgesia and nociceptive responses in rats.  Neuroreport. 2001;  12 715-719
  • 7 Liang Y F, Haake B, Reeh P W. Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action.  J Physiol. 2001;  532 229-239
  • 8 Craig A D. Processing of nociceptive information at supraspinal levels. In: Yaksh TL Anesthesia: Biologic Foundations. Philadelphia; Lippincott-Raven 1998: 625-642
  • 9 Burstein R, Potrebic S. Retrograde labeling of neurons in the spinal cord that project directly to the amygdala or the orbital cortex in the rat.  J Comp Neurol. 1993;  335 469-485
  • 10 Burstein R, Falkowsky O, Borsook D, Strassman A. Distinct lateral and medial projections of the spinohypothalamic tract of the rat.  J Comp Neurol. 1996;  373 549-574
  • 11 Newman H M, Stevens R T, Apkarian A V. Direct spinal projections to limbic and striatal areas: anterograde transport studies from the upper cervical spinal cord and the cervical enlargement in squirrel monkey and rat.  J Comp Neurol. 1996;  365 640-658
  • 12 Craig A D, Bushnell M C, Zhang E T, Blomqvist A. A thalamic nucleus specific for pain and temperature sensation.  Nature. 1994;  372 770-773
  • 13 Jones E G, Lensky K M, Chan V H. Delineation of thalamic nuclei immunoreactive for calcium-binding proteins in and around the posterior pole of the ventral posterior complex. Thalamus & Related Systems Elsevier Science 2001 1: 213-224
  • 14 Gauriau C, Bernard J F. Pain pathways and parabrachial circuits in the rat.  Exp Physiol. 2002;  87 251-258
  • 15 Willis W D, Al-Chaer E D, Quast M J, Westlund K N. A visceral pain pathway in the dorsal column of the spinal cord.  Proc Natl Acad Sci USA. 1999;  96 7675-7679
  • 16 Treede R D, Kenshalo D R, Gracely R H, Jones A K. The cortical representation of pain.  Pain. 1999;  79 105-111
  • 17 Treede R D, Apkarian A V, Bromm B, Greenspan J D, Lenz F A. Cortical representation of pain: functional characterization of nociceptive areas near the lateral sulcus.  Pain. 2000;  87 113-119
  • 18 Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000).  Neurophysiol Clin. 2000;  30 263-288
  • 19 Schnitzler A, Ploner M. Neurophysiology and functional neuroanatomy of pain perception.  J Clin Neurophysiol. 2000;  17 592-603
  • 20 Rainville P. Brain mechanisms of pain affect and pain modulation.  Curr Opin Neurobiol. 2002;  12 195-204
  • 21 Davis K D, Taub E, Duffner F et al.. Activation of the anterior cingulate cortex by thalamic stimulation in patients with chronic pain: a positron emission tomography study.  J Neurosurg. 2000;  92 64-69
  • 22 Garcia-Larrea L, Peyron R, Mertens P et al.. Positron emission tomography during motor cortex stimulation for pain control.  Stereotact Funct Neurosurg. 1997;  68 141-148
  • 23 Duncan G H, Kupers R C, Marchand S, Villemure J G, Gybels J M, Bushnell M C. Stimulation of human thalamus for pain relief: possible modulatory circuits revealed by positron emission tomography.  J Neurophysiol. 1998;  80 3326-3330
  • 24 Ji R R, Woolf C J. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain.  Neurobiol Dis. 2001;  8 1-10
  • 25 Treede R D, Magerl W. Multiple mechanisms of secondary hyperalgesia.  Prog Brain Res. 2000;  129 331-341
  • 26 Stucky C L, Gold M S, Zhang X. Mechanisms of pain.  Proc Natl Acad Sci USA. 2001;  98 11845-11846
  • 27 Fields H L, Basbaum A I. Central nervous mechanisms of pain modulation. In: Wall PD, Melzack R Textbook of Pain. 4th ed. Edinburgh; Churchill Livingstone 1999: 309-329
  • 28 Heinricher M M, Schouten J C, Jobst E E. Activation of brainstem N-methyl-d-aspartate receptors is required for the analgesic actions of morphine given systemically.  Pain. 2001;  92 129-138
  • 29 Mason P. Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions.  Annu Rev Neurosci. 2001;  24 737-777
  • 30 Marinelli S, Vaughan C W, Schnell S A, Wessendorf M W, Christie M J. Rostral ventromedial medulla neurons that project to the spinal cord express multiple opioid receptor phenotypes.  J Neurosci. 2002;  22 10847-10855
  • 31 Heinricher M M. Organizational characteristics of supraspinally mediated responses to nociceptive input. In: Yaksh TL Anesthesia: Biologic Foundations. Philadelphia; Lippincott-Raven 1998: 643-651
  • 32 Heinricher M M, McGaraughty S. Brainstem pain modulating neurons and behavioral state. In: Soja PJ State-Dependent Processing in Somatosensory Pathways. San Diego; CRC Press 1998: 487-503
  • 33 Bajic D, Proudfit H K, Van Bockstaele E J. Periaqueductal gray neurons monosynaptically innervate extranuclear noradrenergic dendrites in the rat pericoerulear region.  J Comp Neurol. 2000;  427 649-662
  • 34 Holden J E, Schwartz E J, Proudfit H K. Microinjection of morphine in the a7 catecholamine cell group produces opposing effects on nociception that are mediated by alpha1- and alpha2-adrenoceptors.  Neuroscience. 1999;  91 979-990
  • 35 Keay K A, Clement C I, Depaulis A, Bandler R. Different representations of inescapable noxious stimuli in the periaqueductal gray and upper cervical spinal cord of freely moving rats.  Neurosci Lett. 2001;  313 17-20
  • 36 Bandler R, Price J L, Keay K A. Brain mediation of active and passive emotional coping.  Prog Brain Res. 2000;  122 333-349
  • 37 Duncan G H, Bushnell M C, Marchand S. Deep brain stimulation: a review of basic research and clinical studies.  Pain. 1991;  45 49-59
  • 38 Petrovic P, Kalso E, Petersson K M, Ingvar M. Placebo and opioid analgesia-imaging a shared neuronal network.  Science. 2002;  295 1737-1740
  • 39 Tracey I, Ploghaus A, Gati J S et al.. Imaging attentional modulation of pain in the periaqueductal gray in humans.  J Neurosci. 2002;  22 2748-2752
  • 40 Fields H L. Pain modulation: expectation, opioid analgesia and virtual pain.  Prog Brain Res. 2000;  122 245-253
  • 41 Urban M O, Gebhart G F. Supraspinal contributions to hyperalgesia.  Proc Natl Acad Sci USA. 1999;  96 7687-7692
  • 42 Porreca F, Ossipov M H, Gebhart G F. Chronic pain and medullary descending facilitation.  Trends Neurosci. 2002;  25 319-325
  • 43 Heinricher M M, Pertovaara A, Ossipov M H. Descending modulation after injury. In: Dostrovsky JO, Carr DB, Koltzenburg M Proceedings of the 10th World Congress on Pain. Seattle; IASP Press 2003: 251-260
  • 44 Watkins L R, Wiertelak E P, Goehler L E et al.. Neurocircuitry of illness-induced hyperalgesia.  Brain Res. 1994;  639 283-299
  • 45 Watkins L R, Wiertelak E P, Goehler L E, Smith K P, Martin D, Maier S F. Characterization of cytokine-induced hyperalgesia.  Brain Res. 1994;  654 15-26
  • 46 Heinricher M M, Morgan M M. Supraspinal mechanisms of opioid analgesia. In: Stein C Opioids and Pain Control. Cambridge; Cambridge University Press 1999: 46-69
  • 47 Heinricher M M, McGaraughty S, Tortorici V. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla.  J Neurophysiol. 2001;  85 280-286
  • 48 Stanfa L, Dickenson A, Xu X J, Wiesenfeld-Hallin Z. Cholecystokinin and morphine analgesia: variations on a theme.  Trends Pharmacol Sci. 1994;  15 65-66
  • 49 Kovelowski C J, Ossipov M H, Sun H, Lai J, Malan T P, Porreca F. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat.  Pain. 2000;  87 265-273
  • 50 Smith D J, Hawranko A A, Monroe P J et al.. Dose-dependent pain-facilitatory and -inhibitory actions of neurotensin are revealed by sr 48692, a nonpeptide neurotensin antagonist: influence on the antinociceptive effect of morphine.  J Pharmacol Exp Ther. 1997;  282 899-908
  • 51 Heinricher M M, Kincaid W, Neubert M J. Neural substrate for analgesic and hyperalgesic actions of neurotensin within the rostral ventromedial medulla.  Soc Neurosci Abstr. 2001; 
  • 52 Head H, Holmes G. Sensory disturbances from cerebral lesions.  Brain. 1911;  34 102-254
  • 53 Melzack R, Casey K L. Sensory, motivational, and central control determinants of pain. In: Kenshalo DR The Skin Senses. Springfield, IL; Charles C Thomas 1968: 423-443

Mary M HeinricherPh.D. 

Department of Neurological Surgery, Oregon Health & Science University

3181 S.W. Sam Jackson Park Road, L472, Portland, OR 97239

eMail: heinricm@ohsu.edu

    >