Horm Metab Res 2004; 36(11/12): 822-829
DOI: 10.1055/s-2004-826169
Review
© Georg Thieme Verlag KG Stuttgart · New York

New Insights into the Regulation of Glucagon Secretion by Glucagon-like Peptide-1

J.  Gromada 1 , P.  Rorsman 2
  • 1Department of Pharmacology, University of Aarhus, Universitetsparken, Aarhus C, Denmark
  • 2The Oxford Centre for Diabetes, Endocrinology and Metabolism, The Churchill Hospital, Oxford, UK
Further Information

Publication History

Received 18 August 2004

Accepted after revision 22 August 2004

Publication Date:
18 January 2005 (online)

Abstract

Glucagon-like peptide-1 (GLP-1) is a potent incretin hormone currently under investigation for use as a novel therapeutic agent in the treatment of type 2 diabetes. One of several therapeutically important biological actions of GLP-1 in type 2 diabetic subjects is ability to induce strong suppression of glucagon secretion. The glucagonostatic action of GLP-1 results from its interaction with a specific G-protein coupled receptor resulting in the activation of adenylate cyclase and an increase in cAMP generation. In the pancreatic α-cell, cAMP, via activation of protein kinase A, interacts with a plethora of signal transduction processes including ion-channel activity and exocytosis of the glucagon-containing granules. In this short review, we will focus on recent advances in our understanding on the cellular mechanisms proposed to underlie the glucagonotropic action of GLP-1 and attempt to incorporate this knowledge into a working model for the control of glucagon secretion. Studies on the effects of GLP-1 on glucagon secretion are relevant to the pathogenesis of type 2 diabetes due to the likely contribution of hyperglucagonemia to impaired glucose tolerance in type 2 diabetes.

References

  • 1 Reaven G M, Chen Y D, Golay A, Swislocki A L, Jaspan J B. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 1987;  64 106-110
  • 2 Shah P, Vella A, Basu A, Basu R, Schwenk W F, Rizza R A. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus.  J Clin Endocrinol Metab. 2000;  85 4053-4059
  • 3 Holst JJ. Enteroglucagon.  Annu Rev Physiol. 1997;  59 257-271
  • 4 Kieffer T J, Habener J F. The Glucagon-like peptides.  Endocrine Rev. 1999;  20 876-913
  • 5 Nauck M A, Heimesaat M K, Ørskov C, Holst J J, Ebert R, Creutzfeldt W. Preserved incretin activity og glucagon-like peptide 1 (7-36 amide) but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.  J Clin Invest. 1993;  91 301-307
  • 6 Nauck M A, Kleine N, Ørskov C, Holst J J, Willms B, Creutzfeldt W. Normalization of fastening hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients.  Diabetologia. 1993;  36 741-744
  • 7 Nauck M A, Sauerwald A, Ritzel R, Holst J J, Schmiegel W H. Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure.  Diabetes Care. 1998;  21 1925-1931
  • 8 Nauck M A, Weber I, Bach I, Richter S, Ørskov C, Holst J J, Schmiegel W. Normalization of fastening glycaemia by intravenous GLP-1 ([7-36 amide] or [7-37]) in type 2-diabetic patients.  Diabetic Med. 1998;  15 937-945
  • 9 Creutzfeldt W OC, Ørskow C, Kleine N, Holst J J, Willms B, Nauck M A. Glucagonostatic actions and reduction of fasting hyperglycemia by Exogenous glucagon-like peptide 1(7-36) amide in type 1 diabetic patients.  Diabetes Care. 1996;  19 580-586
  • 10 Sloop K W, Cao J X-C, Siesky A M, Zhang H Y, Bodenmiller D M, Cox A L, Jacobs S J, Moyers J S, Owens R A, Showalter A D, Brenner M B, Raap A, Gromada J, Berridge B R, Monteith D KB, Porksen N, McKay R A, Monia B P, Bhanot S, Watts L M, Michael M D. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors.  J Clin Invest. 2004;  113 1571-1581
  • 11 Petersen K F, Sullivan J T. Effects of a novel glucagon receptor antagonist (Bay 27 - 9955) on glucagon-stimulated glucose production in humans.  Diabetalogia. 2001;  44 2018-2024
  • 12 Unson C G, Gurzenda E M, Merrifield R B. Biological activities of des-His1[Glu9] glucagon amide, a glucagon antagonist.  Peptides. 1989;  10 1171-1177
  • 13 Henquin J C. Triggering and amplifying pathways of regulation of insulin secretion by glucose.  Diabetes. 2000;  49 1751-1760
  • 14 Heimberg H, De Vos A, Moens K, Quartier E, Bouwens L, Pipeleers D, Van Schaftingen E, Madsen O, Schuit F. The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells.  Proc Natl Acad Sci USA. 1996;  93 7036-7041
  • 15 Heimberg H, De Vos A, Pipeleers D, Thorens B, Schuit F. Differences in glucose transporter gene expression between rat pancreatic alpha-and beta-cells are correlated to differences in glucose transport but not in glucose utilization.  J Biol Chem. 1995;  270 8971-8975
  • 16 Detimary P, Dejonghe S, Ling Z, Pipeleers D, Schuit F, Henquin J C. The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets.  J Biol Chem. 1998;  273 33 905-33 908
  • 17 Gromada J, Ding W G, Barg S, Renström E, Rorsman P. Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors.  Pflügers Arch. 1997;  434 515-524
  • 18 Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y. Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel.  FEBS Lett. 1999;  444 265-269
  • 19 Gopel S O, Kanno T, Barg S, Weng X G, Gromada J, Rorsman P. Regulation of glucagon release in mouse α-cells by KATP channels and inactivation of TTX-sensitive Na+ channels.  J Physiol. 2000;  528 509-520
  • 20 Rorsman P, Hellman B. Voltage-activated currents in guinea pig pancreatic alpha 2 cells. Evidence for Ca2+-dependent action potentials.  J Gen Physiol. 1988;  91 223-242
  • 21 Rorsman P. Two types of Ca2+ currents with different sensitivities to organic Ca2+ channel antagonists in guinea pig pancreatic alpha 2 cells.  J Gen Physiol. 1988;  91 243-254
  • 22 Barg S, Galvanovski J, Gopel S O, Rorsman P, Eliasson L. Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells.  Diabetes. 2000;  49 1500-1510
  • 23 Gromada J, Ma X, Høy M, Bokvist K, Salehi A, Berggren P O, Rorsman P. ATP-Sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wildtype and SUR1-/-mouse α-cells.  Diabetes. 2004;  53 (Suppl 3) 181-189
  • 24 Bokvist K, Olsen H L, Hoy M, Gotfredsen C F, Holmes W F, Buschard K, Rorsman P, Gromada J. Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells.  Pflügers Arch. 1999;  438 428-436
  • 25 Suzuki M, Fujikura K, Kotake K, Inagaki N, Seino S, Takata K. Immuno-localization of sulphonylurea receptor 1 in rat pancreas.  Diabetologia. 1999;  42 1204-1211
  • 26 Ishihara H, Maechler P, Gjinovci A, Herrera P L, Wollheim C B. Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells.  Nat Cell Biol. 2003;  5 330-335
  • 27 Liu Y J, Vieira E, Gylfe E. A store-operated mechanism determines the activity of the electrically excitable glucagons-secreting pancreatic α-cell.  Cell Calcium. 2004;  35 357-365
  • 28 Cejvan K, Coy D H, Efendic S. Intra-islet somatostatin regulates glucagon release via type 2 somatostatin receptors in rats.  Diabetes. 2003;  52 1176-1181
  • 29 Rorsman P, Berggren P O, Bokvist K, Ericson H, Mohler H, Östenson C G, Smith P A. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels.  Nature. 1989;  341 233-236
  • 30 Braun M, Wendt A, Birnir B, Broman J, Eliasson L, Galvanovskis J, Gromada J, Mulder H, Rorsman P. Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic β-cells.  J Gen Physiol. 2004;  123 191-204
  • 31 Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, Rorsman P, Braun M. Glucose inhibition of glucagon secretion from rat α cells is mediated by GABA release from neighbouring β cells.  Diabetes. 2004;  53 1038-1045
  • 32 Michalik M, Erecinska M. GABA in pancreatic islets: metabolism and function.  Biochem Pharmacol. 1992;  44 1-9
  • 33 Ashcroft F M, Rorsman P. Electrophysiology of the pancreatic B-cell.  Prog Biophys Mol Biol. 1989;  54 87-143
  • 34 Ashcroft F, Rorsman P. Type 2 diabetes mellitus: not quite exciting enough?.  Hum Mol Genet. 2004;  13 (1) R21-31
  • 35 Fehmann H C, Habener J F. Functional receptors for the insulinotropic hormone glucagon-like peptide-1(7-37) on a somatostatin secreting cell line.  FEBS. 1991;  279 335-340
  • 36 Gros L, Demiprence E, Bataille D, Kervran A. Characterization of high-affinity receptors for glucagon-like peptide-1 (7-36)amide on a somatostatin-secreting cell line (RIN T3).  Biomed Res. 1992;  13 143-150
  • 37 Gros L, Thorens B, Bataille D, Kervran A. Glucagon-like peptide-1-(7-36)amide, oxyntomodulin, and glucagon interact with a common receptor in a somatostatin-secreting cell line.  Endocrinology. 1993;  133 631-638
  • 38 Heller S R, Aponte G W. Intra-islet regulation of hormone secretion by glucagon-like peptide-1-(7-36) amide.  Am J Physiol. 1995;  269 G852-860
  • 39 Heller S, Kieffer T J, Habener J F. Insulinotropic glucagon-like peptide 1 receptor expression in glucagon-producing α-cells of rat endocrine pancreas.  Diabetes. 1997;  46 785-791
  • 40 Ørskov C, Poulsen S. Glucagonlike peptide-1-(7-36)-amide receptors only in islets of Langerhans. Autoradiographic survey of extracerebral tissues in rats.  Diabetes. 1991;  40 1292-1296
  • 41 Moens K, Heimberg H, Flamez D, Huypens P, Quartier E, Ling Z, Pipeleers D, Gremlich S, Thorens B, Schuit F. Expression and functional activity of glucagon, glucagon-like peptide 1, and glucose-dependent insulinotropic peptide receptors in rat pancreatic islet cells.  Diabetes. 1996;  45 257-261
  • 42 Ma X, Zhang Y, Gromada J, Sewing S, Berggren P O, Buschard K, Salehi A, Vikman J, Rorsman P, Eliasson L. Glucagon stimulates exocytosis in mouse and rat pancreatic α cells by binding to glucagon receptors.  Mol Endocrinol. 2004;  in press
  • 43 Ding W G, Renström E, Rorsman P, Buschard K, Gromada J. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat α-cells by a protein kinase A-medicated mechanism.  Diabetes. 1997;  46 792-800
  • 44 Ashcroft F M, Gribble F M. ATP-sensitive K+ channels and insulin secretion. Their role in health and disease.  Diabetologia. 1999;  42 903-919
  • 45 Holz G G, Kühtreiber W M, Habener J F. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagons-like peptide-1 (7-37).  Nature. 1993;  361 362-365
  • 46 Gromada J, Bokvist K, Ding W G, Holst J J, Nielsen J H, Rorsman P. Glucagon-like peptide-1(7 - 36)amide stimulates exocytosis in human pancreatic B-cells by both proximal and distal regulatory steps in the stimulus-secretion coupling.  Diabetes. 1998;  47 57-65
  • 47 Light P E, Fox J EM, Riedel M J, Wheeler M B. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism.  Mol Endocrinol. 2002;  16 2135-2144
  • 48 Hoffmann D A, Johnson D. Downregulation of transient K+ channels in dentrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC.  J Neurosci. 1998;  18 3521-3528
  • 49 Anderson A E, Adams J P, Qian Y, Cook R G, Pfaffinger P J, Sweatt J D. Kv4.2 phosphorylation by cyclic AMP-dependent protein kinase.  J Biol Chem. 2000;  275 5337-5346
  • 50 Yuan L L, Adams J P, Swank M, Sweatt J D, Johnston D. Protein kinase modulation of dentritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway.  J Neurosci. 2002;  22 4860-4868
  • 51 Schrader L A, Anderson A E, Mayne A, Pfaffinger P J, Sweatt J D. PKA modulation of Kv4.2-encoded A-type potassium channels requires formation of a supramolecular complex.  J Neurosci. 2002;  22 10123-10133
  • 52 Adams J P, Anderson A E, Varga A W, Dineley K T, Cook R G, Pfaffinger P J, Sweatt J D. The A-type potassium channel kv4.2 is a substrate for the mitogen-activated protein kinase ERK.  J Neurochem. 2000;  75 2277-2287
  • 53 Gopel S, Zhang Q, Eliasson L, Ma X S, Galvanovskis J, Kanno T, Salehi A, Rorsman P. Capacitance measurements of exocytosis in mouse pancreatic alpha-, beta-and delta-cells within intact islets of Langerhans.  J Physiol. 2004;  556 711-726
  • 54 Gromada J, Høy M, Buschard K, Salehi A, Rorsman P. Somatostatin inhibits exocytosis in rat pancreatic α-cells by Gi2-dependent activation of calcineurin and depriming of secretory granules.  J Physiol. 2001;  535 519-532
  • 55 Bode H P, Moormann B, Dabew R, Göke B. Glucagon-like peptide 1 elevates cytosolic calcium in pancreatic β-cells independently of protein kinase A.  Endocrinol. 1999;  140 3919-3927
  • 56 Cullinan C A, Brady E J, Saperstein R, Leibowitz M D. Glucose-dependent alterations of intracellular free calcium by glucagons-like peptide-1(7 - 36amide) in individual ob/ob mouse β-cells.  Cell Calcium. 1994;  15 391-400
  • 57 Gromada J, Dissing S, Rorsman P. Desensitization of glucagon-like peptide 1 receptors in insulin-secreting βTC3 cells: role for PKA-independent mechanisms.  Br J Pharmacol. 1996;  118 769-775
  • 58 Holz G G, Leech C A, Heller R S, Castonguay M, Habener J F. cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic β-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37).  J Biol Chem. 1999;  274 14 147-14 156
  • 59 Kang G, Chepurny O G, Holz G G. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic β-cells.  J Physiol. 2001;  536 375-385
  • 60 Tsuboi T, Xavier G S, Holz G G, Jouaville L S, Thomas A P, Rutter G A. Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 β-cells.  Biochem J. 2003;  369 287-299
  • 61 Yada T, Itoh K, Nakata M. Glucagon-like peptide-1-(7-36) amide and a rise in cyclic adenosine 3′,5′-monophosphate increase cytosolic free Ca2+ in rat pancreatic β-cells by enhancing Ca2+ channel activity.  Endocrinol. 1993;  133 1685-1692
  • 62 Gromada J, HÖy M, Buschard K, Salehi A, Rorsman P. Somatostatin inhibits exocytosis in rat pancreatic alpha-cells by G(i2)-dependent activation of calcineurin and depriming of secretory granules.  J Physiol. 2001;  535 519-532
  • 63 Rorsman P, Renström E. Insulin granule dynamics in pancreatic beta cells.  Diabetologia. 2003;  46 1029-1045
  • 64 Ozaki N, Shibasaki T, Kashima Y, Mik T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S. cAMP-GEFII is a direct target of cAMP in regulated exocytosis.  Nat Cell Biol. 2000;  2 805-811
  • 65 Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S. Interaction of ATP sensor, Ca2+ sensor, and voltage-dependent calcium channel and insulin granule exocytosis.  J Biol Chem. 2003;  279 7956-7961
  • 66 Eliasson L, Ma X, Renström E, Barg S, Berggren P O, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells.  J Gen Physiol. 2003;  121 181-197
  • 67 Suzuki S, Kawai K, Ohashi S, Mukai H, Murayama Y, Yamashita K. Reduced insulinotropic effects of glucagonlike peptide 1-(7-36)-amide and gastric inhibitory polypeptide in isolated perfused diabetic rat pancreas.  Diabetes. 1990;  39 1320-1325
  • 68 Komatsu R, Matsuyama T, Namba M, Watanabe N, Itoh H, Kono N, Tarui S. Glucanostatic and insulinotropic action of glucagonlike peptide 1-(7-36)-amide.  Diabetes. 1989;  38 902-905
  • 69 Kawai K, Suzuki S, Ohashi S, Mukai H, Ohmori H, Muayama Y, Yamashita K. Comparison of the effects of glucagon-like peptide-1-(1-37) and -(7-37) and glucagon on islet hormone release from isolated perfused canine and rat pancreases.  Endocrinol. 1989;  124 1768-1773
  • 70 Yamato E, Noma Y, Tahara Y, Ikegami H, Yamamoto Y, Cha T, Yoneda H, Ogihara T, Ohboshi C, Hirota M, Shima K. Suppression of synthesis and release of glucagon by glucagon-like peptide-1(7 - 36 amide) without affect on mRNA level in isolated rat islets.  Biochem Biophys Res Commun. 1990;  2 431-437
  • 71 Fehmann H C, Hering B J, Wolf M J, Brandhorst H, Brandhorst D, Bretzel R G, Federlin K, Göke B. The effect of glucagon-like peptide-1 (GLP-1) on hormone secretion form isolated human pancreatic islets.  Pancreas. 1995;  11 196-200
  • 72 Pipeleers D G, Schuit F C, Van Schravendijk C F, Van de Winkel M. Interplay of nutrients and hormones in regulation of glucagon release.  Endocrinol. 1985;  117 817-823
  • 73 Nauck M A, Heimesaat M M, Behle K, Holst J J, Nauck M S, Ritzel R, Hufner M, Schmiegel W H. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers.  J Clin Endocrinol Metab. 2002;  87 1239-1246
  • 74 Dinneen S F. The postrandial state. Mechanisms of glucose intolenrance.  Diabet Med. 1997;  14 suppl 3 S19-24
  • 75 Shah P, Basu A, Basu R, Rizza R. Impact of lack of suppression of glucagon on glucose tolerance in humans.  Am J Physiol. 1999;  277 E283-290

J. Gromada

Lilly Research Laboratories

Essener Straße 93 · 22419 Hamburg · Germany ·

Phone: +49 (40) 527 24 323

Fax: +49 (40) 527 24 615

Email: gromada@lilly.com

    >